收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
当前位置:首页 » 全站搜索 » 搜索:电磁干扰
[常见问题解答]如何选择合适的输入滤波器来优化开关电源性能[ 2025-04-23 10:58 ]
在开关电源的设计与使用中,输入滤波器的选择对于优化电源的性能至关重要。输入滤波器的作用是抑制从电网或负载设备传导到开关电源的电磁干扰(EMI),减少噪声对系统的影响,提升系统的稳定性和效率。选择合适的输入滤波器能够显著提高电源的可靠性,降低辐射和传导的干扰。1. 确定干扰类型与频率在选择输入滤波器之前,首先需要了解电源系统所面临的电磁干扰类型。开关电源产生的干扰通常有差模噪声和共模噪声两种形式。差模噪声是指通过电源线路传播的噪声,而共模噪声则是通过电源的接地线传播的。不同的噪声类型需要不同类型的滤波器来进行抑制,因
http://www.szyxwkj.com/Article/rhxzhsdsrl_1.html3星
[常见问题解答]如何正确布置开关电源的输入电容?PCB设计中必须掌握的关键细节[ 2025-04-17 11:12 ]
在开关电源的设计实践中,输入电容的位置和连接方式对整个系统的性能有着直接影响。如果布置不当,不仅可能导致效率下降,还容易引起电磁干扰、瞬态响应迟缓等问题。因此,深入掌握输入电容的PCB设计要点,是电源工程师在布板时不可忽视的一项基本功。一、缩短电容至功率开关的连线距离输入电容的主要作用之一是为开关管提供稳定而迅速的电流支持。如果其与功率器件之间的连接路径过长,寄生电感会在开关动作时产生尖峰电压,影响电源的稳定性。最佳做法是将电容直接靠近MOSFET或电源芯片的VIN和GND引脚布放,确保电流通道短而宽,避免回路形成
http://www.szyxwkj.com/Article/rhzqbzkgdy_1.html3星
[常见问题解答]为什么移相全桥出现占空比紊乱?常见驱动问题全梳理[ 2025-04-16 11:03 ]
在中高功率变换电路中,移相全桥拓扑因具备高效率、低电磁干扰等优势,被广泛应用于工业电源、电动汽车充电、逆变器等场合。然而,在系统调试或长期运行过程中,工程师常会遇到一个棘手的问题:占空比紊乱。此类现象不仅影响输出波形的质量,严重时还可能引发电路的热失控或驱动异常。究其原因,驱动系统中的问题往往是引发占空比异常的关键所在。一、驱动逻辑信号失配在移相全桥电路中,四个功率开关器件(如MOSFET或IGBT)需要按照严格的时序进行控制。如果控制信号存在时间重叠或缺失,如上下桥臂未能保持足够的死区时间,会造成桥臂短路,或者导
http://www.szyxwkj.com/Article/wsmyxqqcxz_1.html3星
[常见问题解答]开关电源EMI滤波器的设计原理与仿真分析[ 2025-04-15 12:11 ]
随着电子技术的飞速发展,现代社会对电子设备的需求愈加多样化,尤其是开关电源作为广泛应用的电力转换设备,已经在各类电子产品中扮演着重要角色。然而,由于开关电源采用高频开关工作方式,它自身及其周围的电磁环境很容易受到干扰。为了解决这个问题,EMI滤波器应运而生,它主要用于抑制开关电源产生的电磁干扰。一、开关电源及其EMI问题开关电源因其高效率、低发热以及体积小等优点被广泛应用于工业控制、通信设备以及家电产品中。然而,开关电源在工作过程中会产生频繁的开关操作,这些高频信号会通过电源线传导,进而影响其他电路或设备的正常工作
http://www.szyxwkj.com/Article/kgdyemilbq_1.html3星
[常见问题解答]如何优化开关管RC吸收回路以提升电路效率[ 2025-04-14 14:51 ]
在电路设计中,开关管RC吸收回路的优化对于提升整体电路效率具有重要意义。RC吸收回路不仅能够有效地抑制开关瞬间产生的过冲与振铃,还能提高电路的稳定性和可靠性。首先,理解RC吸收回路的基本原理是优化的前提。RC吸收回路通常由电阻(R)和电容(C)组成,它们连接在开关管的集电极和地之间,主要用来吸收开关过程中的能量。RC吸收回路的工作原理是通过电容吸收高频瞬态能量,电阻则将其转化为热能,抑制了电路中的过冲与振铃现象。通过合理选择RC值,可以有效控制电路的噪声和电磁干扰(EMI),从而改善电路的整体性能。在优化RC吸收回
http://www.szyxwkj.com/Article/rhyhkggrcx_1.html3星
[常见问题解答]基于非对称瞬态抑制技术的SiC MOSFET门极保护全新解决方案[ 2025-04-12 11:34 ]
在功率电子设计领域,随着SiC MOSFET器件的快速普及,如何有效保障其门极的安全,已成为工程师们关注的重点问题。尤其在高压、大功率及高频应用场景下,门极易受到电源瞬态、电磁干扰及负载切换等因素的威胁。针对这一痛点,近年来非对称瞬态抑制(TVS)技术的出现,为SiC MOSFET门极的可靠保护提供了全新的解决思路。一、为何SiC MOSFET门极需要特殊保护?SiC MOSFET相比传统硅器件,具备开关速度更快、耐压能力更高、导通损耗更低等优势,但这也带来了门极易受干扰的设计挑战。特别是在实际应用中,门极信号线往
http://www.szyxwkj.com/Article/jyfdcstyzj_1.html3星
[常见问题解答]强制关断电路在有源箝位中的应用与优化[ 2025-04-09 11:43 ]
随着现代电源设计的不断发展,有源箝位电路逐渐成为提升功率转换效率、减小电磁干扰(EMI)及降低开关损耗的关键技术之一。尤其是在变换器中,有源箝位电路能够通过控制开关管的开关过程,减轻其关断时的应力,避免电流和电压的突变,改善系统性能。然而,在一些特定的工作环境下,如输出端带大电容的关机下电过程中,箝位电路可能会出现一定的振荡现象,影响电源的稳定性和后级设备的正常启动。为了解决这一问题,强制关断电路的引入成为一种有效的优化手段。一、强制关断电路的工作原理在有源箝位电路中,箝位管(通常为MOSFET)用于限制电流和电压
http://www.szyxwkj.com/Article/qzgddlzyyq_1.html3星
[常见问题解答]开关电源冲击电流测试的常用方法与步骤[ 2025-04-09 10:23 ]
开关电源在现代电子设备中发挥着至关重要的作用,广泛应用于通信、家电、工业控制等领域。然而,由于开关电源的工作特性,电流的快速变化常常会对电网和其他电气设备造成干扰。因此,进行开关电源冲击电流测试显得尤为重要,能够帮助工程师评估设备对电网的影响以及设备本身的抗干扰能力。一、冲击电流的定义及影响开关电源的冲击电流指的是在开关操作过程中,由于电源开关的切换行为所引起的瞬时电流变化。这些电流波动不仅可能影响电源的稳定性,还会对其他设备产生电磁干扰(EMI)。常见的冲击电流类型包括瞬态电流、谐波电流和电流峰值,它们各自对电网
http://www.szyxwkj.com/Article/kgdycjdlcs_1.html3星
[常见问题解答]探索共模信号与差模信号在滤波器中的应用和优化[ 2025-04-08 10:33 ]
随着电子设备和通信技术的快速发展,电磁干扰(EMI)已成为影响设备性能的重要因素。尤其是在高频电路中,如何有效地抑制干扰信号,保证系统的稳定性与可靠性,已经成为设计中的关键问题。共模信号与差模信号的处理,是解决这一问题的关键技术之一。滤波器作为一种有效的干扰抑制手段,广泛应用于电源、电信和各种电子设备中。那么,如何优化滤波器以应对共模信号与差模信号,便成为了设计过程中不可忽视的挑战。一、共模信号与差模信号的定义及区别在电子系统中,有两种常见的电磁干扰信号:共模信号和差模信号。它们在信号传播过程中的表现方式以及它们对
http://www.szyxwkj.com/Article/tsgmxhycmx_1.html3星
[常见问题解答]3千瓦LLC拓扑中SiC MOSFET的集成优化路径[ 2025-04-07 12:10 ]
在高效电源系统快速发展的背景下,LLC谐振变换器凭借其高效率和低电磁干扰特性,逐渐成为中高功率密度应用的首选拓扑之一。而在实现高频率、高效率运行的过程中,碳化硅(SiC)MOSFET的集成应用正成为性能突破的关键路径之一。一、SiC MOSFET在3kW LLC中的技术适配性LLC拓扑本身以其软开关特性(ZVS或ZCS)有效降低开关损耗,适合高频操作。将SiC MOSFET引入该拓扑后,其具备的低导通电阻、高击穿电压和极低的反向恢复电荷特性,使其更适用于200kHz~500kHz以上的工作频率区间。相比传统硅基MO
http://www.szyxwkj.com/Article/3qwllctpzs_1.html3星
[常见问题解答]提升开关电源电磁兼容性的关键策略解析[ 2025-03-25 15:24 ]
在现代电子系统中,开关电源以其高效率、小体积和良好的稳压特性被广泛应用于通信设备、工业控制、医疗仪器及消费类电子产品。然而,频繁的开关操作不可避免地引入了电磁干扰(EMI),这不仅影响设备本身的性能稳定性,还可能对周边系统产生干扰。因此,提高开关电源的电磁兼容性(EMC)成为电子工程设计中的重点课题。一、电磁干扰的来源剖析开关电源的基本方法是通过高频开关器件周期性导通和关断来转换直流电压为高频脉冲。然后,它通过变压器耦合,以输出目标直流电压。在整个过程中,会产生大量的尖峰电压和高频噪声。常见的干扰源包括:1. 开关
http://www.szyxwkj.com/Article/tskgdydcjr_1.html3星
[常见问题解答]掌握ESD二极管核心参数,提升电路抗静电能力[ 2025-03-25 12:01 ]
在现代电子设计中,静电放电(Electrostatic Discharge,简称ESD)是一种非常常见、却往往被低估的电磁干扰来源。无论是USB、HDMI、Type-C等高速通信接口,还是电源、按键、GPIO等输入端口,若缺乏有效ESD防护,一次无意的人体触碰、插拔操作甚至空气放电都可能造成器件损坏、芯片烧毁,甚至整个系统崩溃。ESD二极管作为最常用的静电防护元件之一,已被广泛应用于各类产品中。但很多工程师在选型和应用ESD二极管时,往往只关注电压等级或价格,却忽略了其关键参数对整个系统电气性能的影响。一、ESD二
http://www.szyxwkj.com/Article/zwesdejghx_1.html3星
[常见问题解答]提升电源系统抗干扰性能的输入滤波电路设计策略[ 2025-03-22 10:09 ]
在当今电子设备高度集成与高速运行的背景下,电磁干扰(EMI)问题日益凸显,尤其是在开关电源广泛应用的系统中。作为EMI的主要来源之一,电源系统本身必须具备出色的抗干扰能力,才能保证整个设备的稳定运行。而在众多电磁兼容(EMC)设计手段中,输入滤波电路无疑是提升电源系统抗干扰能力的关键一环。一、抗干扰设计的背景与必要性开关电源由于其高频变换特性,在转换过程中会产生大量尖峰电压、谐波电流以及高频噪声,这些干扰信号通过输入端口耦合进电网,或以辐射方式影响周边设备。一方面,这种干扰可能导致自身或其他模块产生逻辑错误,甚至系
http://www.szyxwkj.com/Article/tsdyxtkgrx_1.html3星
[常见问题解答]双向TVS管与单向TVS管符号区别解析[ 2025-03-20 10:35 ]
在电子电路的设计与保护方案中,瞬态电压抑制二极管(TVS管)被广泛应用于防护敏感电子元件免受瞬态过电压的影响。TVS管按照导电特性可分为单向TVS管和双向TVS管,它们的符号在电路图中有所不同。一、TVS管的基本概念TVS管(瞬态电压抑制器)是一种用于吸收突发过电压的半导体器件,能够有效防护电子电路免受浪涌、电磁干扰(EMI)和静电放电(ESD)等瞬态干扰的影响。其工作方式类似于稳压二极管,当电压超过设定值时,TVS管会迅速进入导通状态,引导过电流泄放,防止电路元件受损。随着异常电压的消失,TVS管会恢复高阻抗状态
http://www.szyxwkj.com/Article/sxtvsgydxt_1.html3星
[常见问题解答]开关式与线性稳压器的区别及应用场景对比[ 2025-03-17 10:56 ]
稳压器在电子设备中起着关键作用,其主要任务是提供稳定的直流电压,以满足各种电子元件的正常工作需求。在电源设计中,稳压器主要分为线性稳压器和开关稳压器,两者在工作原理、性能、能效以及适用场景方面均存在较大差异。一、线性稳压器:原理与特点线性稳压器是一种通过调节输入与输出之间的电压差来实现稳压的装置,其核心元件通常是一个可变电阻(如功率晶体管)。当输入电压高于目标输出电压时,线性稳压器会将多余的电压转换为热量耗散,以确保输出电压保持稳定。1. 主要特点:- 低噪声:由于没有高频开关动作,线性稳压器不会产生电磁干扰(EM
http://www.szyxwkj.com/Article/kgsyxxwyqd_1.html3星
[常见问题解答]二极管阵列如何提升CAN总线的电磁兼容性与抗干扰能力[ 2025-03-17 10:44 ]
在现代汽车电子、工业自动化及智能制造系统中,CAN总线(Controller Area Network)因其高效的数据通信能力,被广泛用于多个电子控制单元(ECU)之间的信息传输。然而,由于CAN总线往往工作在复杂的电磁环境下,外部电磁干扰(EMI)和瞬态电压(如浪涌、静电放电等)可能会对其通信质量和稳定性造成严重影响。因此,采用高效的电路保护方案至关重要,而二极管阵列正是提升CAN总线电磁兼容性(EMC)和抗干扰能力的重要技术之一。一、CAN总线面临的电磁兼容挑战在现实应用中,CAN总线主要面临以下几种干扰类型:
http://www.szyxwkj.com/Article/ejgzlrhtsc_1.html3星
[常见问题解答]开关电源如何产生EMC干扰?关键机制深度解析[ 2025-03-15 11:37 ]
开关电源的电磁兼容(EMC)干扰问题是电子工程中的重要挑战,特别是在高频开关技术广泛应用的背景下,电磁干扰(EMI)问题日益突出。这类干扰不仅可能降低设备自身的性能,还可能影响周围电子设备的正常工作。因此,掌握EMC干扰的成因,有助于工程师优化电路设计,提升系统的稳定性和可靠性。一、开关电源的工作原理与干扰根源开关电源的基本原理是利用高频开关管(如MOSFET、IGBT等)在高频率下进行快速开关操作,将电能转换成所需的稳定直流电压。其核心过程包括开关调制、电能传输和滤波整流。虽然这种工作模式相比线性电源具有更高的效
http://www.szyxwkj.com/Article/kgdyrhcsem_1.html3星
[常见问题解答]ESD保护电路为何采用正向二极管?工作原理解析[ 2025-03-14 14:21 ]
在现代电子设备设计中,静电放电(ESD,Electrostatic Discharge)是一个不容忽视的问题。如果没有适当的防护措施,静电放电可能会损坏精密的电子元件,导致设备性能下降,甚至完全失效。为了应对这一挑战,ESD保护电路成为电子产品设计中的重要组成部分。而在众多ESD防护方案中,正向二极管因其独特的特性被广泛应用。那么,为什么ESD保护电路会选择正向二极管?它的工作原理是什么?一、静电放电对电子设备的影响静电放电是指两个不同电势的物体之间发生的短暂高电压释放现象。它可以来源于人体接触、摩擦、电磁干扰等,
http://www.szyxwkj.com/Article/esdbhdlwhc_1.html3星
[常见问题解答]下拉电阻在三极管电路中的作用与优化策略[ 2025-03-11 12:03 ]
下拉电阻在三极管电路中的作用不容忽视,它不仅决定了电路的稳定性,还影响功耗和抗干扰能力。合理设计下拉电阻,可以确保三极管工作状态明确,减少误触发,提高系统可靠性。一、下拉电阻的核心作用1. 稳定电位,防止漂移在电路中,三极管基极可能会悬空,导致不稳定状态。例如,在MCU驱动三极管的场景下,当GPIO引脚未输出高或低电平时,基极处于高阻态,易受外部噪声影响,可能意外导通三极管。此时,下拉电阻提供了明确的参考路径,使基极保持在低电位,确保三极管处于截止状态。2. 降低噪声干扰高频环境下,电磁干扰可能导致基极电位波动,影
http://www.szyxwkj.com/Article/xldzzsjgdl_1.html3星
[常见问题解答]揭秘功率二极管反向恢复的三大抑制技巧[ 2025-03-03 10:52 ]
功率二极管广泛应用于电力电子设备中,特别是在开关电源、逆变器以及其他高频电路中。然而,当二极管从导通状态切换到截止状态时,会产生反向恢复现象。这种现象不仅会导致额外的功耗,还会引发电磁干扰(EMI)以及电压尖峰,影响系统的稳定性。因此,抑制二极管的反向恢复问题成为工程师们关注的重要课题。1. RC吸收电路——经典的抑制方式RC吸收电路是抑制功率二极管反向恢复的一种常见方法,其核心思想是在二极管两端并联一个RC网络,以吸收反向恢复时产生的尖峰电压,从而减少振荡和EMI干扰。在二极管关断瞬间,由
http://www.szyxwkj.com/Article/jmglejgfxh_1.html3星

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号