收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
当前位置:首页 » 全站搜索 » 搜索:电感
[常见问题解答]半桥LLC谐振电路的工作机制与性能解析[ 2025-04-22 11:12 ]
半桥LLC谐振电路作为一种高效的电力转换拓扑结构,广泛应用于高效开关电源、LED驱动、电池充电系统等领域。一、半桥LLC谐振电路的工作原理半桥LLC谐振电路主要由两个MOS管(Q1 和 Q2)、励磁电感Lm、谐振电感Lr、谐振电容Cr和变压器组成。它使用高频开关和LLC谐振网络进行能量传输和转换。1. 启动阶段:在半桥电路中,Q1和Q2通过控制器进行驱动,以开关的方式调节电流的流动。初始时,Q1导通,Q2关闭,输入电源通过Q1和LLC谐振网络为负载提供电能。2. 谐振过程:随着开关的切换,Q1和Q2的交替工作使得L
http://www.szyxwkj.com/Article/bqllcxzdld_1.html3星
[常见问题解答]不同类型开关电源拓扑解析:从基本结构到应用选型全指南[ 2025-04-17 12:16 ]
在现代电子设计中,开关电源已经成为各类设备的主要供电方式。由于其能效高、体积小、散热性能好,广泛应用于通信设备、消费电子、工业控制、车载系统等领域。然而,不同应用场合对电压、电流、效率、成本的要求差异较大,因此选用合适的开关电源拓扑结构尤为关键。一、降压型拓扑(Buck Converter)降压型是最常见也是结构最为简单的一种拓扑。其基本构成包括开关器件、电感、续流二极管和输出电容。Buck结构的特点是输出电压始终低于输入电压,因此特别适合输入高压但负载仅需低压供电的系统。在开关导通时,电流通过电感进入负载;关断后
http://www.szyxwkj.com/Article/btlxkgdytp_1.html3星
[常见问题解答]开关电源正激与反激结构差异详解:工作方式与适用场景全对比[ 2025-04-17 11:37 ]
在开关电源的诸多拓扑结构中,正激与反激是最常见的两种形式。它们在电路结构、能量传递方式以及实际应用场景上存在显著差异。正确理解这两种拓扑的特性,有助于工程师根据不同的设计需求做出最优选择。一、正激与反激的核心结构区别从电路结构上看,正激电源中的变压器一次绕组与开关管串联,当开关管导通时,能量立即通过变压器耦合到二次侧并供给负载。而反激电源则不同,它在开关管导通期间将能量储存在变压器的磁场中,随后在关断时由次级释放能量至负载,属于能量暂存型传输。反激变压器实质上是一个耦合电感器,其工作特性与普通变压器存在本质差别。它
http://www.szyxwkj.com/Article/kgdyzjyfjj_1.html3星
[常见问题解答]如何正确布置开关电源的输入电容?PCB设计中必须掌握的关键细节[ 2025-04-17 11:12 ]
在开关电源的设计实践中,输入电容的位置和连接方式对整个系统的性能有着直接影响。如果布置不当,不仅可能导致效率下降,还容易引起电磁干扰、瞬态响应迟缓等问题。因此,深入掌握输入电容的PCB设计要点,是电源工程师在布板时不可忽视的一项基本功。一、缩短电容至功率开关的连线距离输入电容的主要作用之一是为开关管提供稳定而迅速的电流支持。如果其与功率器件之间的连接路径过长,寄生电感会在开关动作时产生尖峰电压,影响电源的稳定性。最佳做法是将电容直接靠近MOSFET或电源芯片的VIN和GND引脚布放,确保电流通道短而宽,避免回路形成
http://www.szyxwkj.com/Article/rhzqbzkgdy_1.html3星
[常见问题解答]LLC与移相全桥谁更常用?一文看懂它们的主流应用与选型逻辑[ 2025-04-16 10:56 ]
在开关电源设计中,LLC谐振变换器与移相全桥变换器都是被广泛使用的拓扑结构。虽然二者都具备软开关能力、效率高、功率密度大的优势,但它们在应用场景、设计复杂度、控制方式等方面却存在显著差异。很多工程师在面对选型时也常常面临抉择:到底哪一种更常用?一、两者原理简析:技术路线不同LLC变换器基于串联谐振电感和电容构成谐振腔,通过调整工作频率以实现功率控制。其最大特点是在零电压开关(ZVS)或近似零电流开关(ZCS)条件下完成开关动作,适合中高频高效转换,特别适用于轻载效率要求高的场合。移相全桥结构则通过控制四个功率开关之
http://www.szyxwkj.com/Article/llcyyxqqsg_1.html3星
[常见问题解答]移相全桥与全桥LLC拓扑结构对比:原理、性能与适用场景解析[ 2025-04-16 10:49 ]
在高性能电源转换设计中,移相全桥(PSFB)和全桥LLC是两种广泛应用的拓扑结构。两者虽同属全桥型DC-DC转换架构,但在电路原理、效率表现、控制策略和应用适配性方面存在诸多差异。理解它们的关键特性,对于工程师在不同项目中正确选型具有重要指导价值。一、拓扑原理差异详解移相全桥主要依靠控制桥臂之间的导通相位差实现功率调节。通过四个功率MOSFET组成的桥式网络,输入电压施加于变压器初级线圈上,再经输出整流得到所需电压。其能量传输过程部分依赖变压器漏感和外接输出电感,主要采用硬开关或近似软开关方式,调制机制较为清晰。全
http://www.szyxwkj.com/Article/yxqqyqqllc_1.html3星
[常见问题解答]DC-DC电源设计核心原理与关键参数计算详解[ 2025-04-12 10:47 ]
在电子系统快速迭代的今天,DC-DC转换电路已成为不可或缺的能量转换中枢。如何精准掌握其设计原理并科学选取关键参数,是每一位硬件工程师、电源开发者必须面对的课题。一、直流转换基本原理DC-DC转换器的本质功能是将一个固定电平的直流电压转换为另一所需电压等级的稳定直流输出。这一过程大多通过开关方式实现,因此也常被称为“开关电源”。与传统的线性稳压方式相比,DC-DC转换器因其能效更高、热损更小而成为主流解决方案。其核心原理可简单描述为:开关晶体管周期性导通与关断,改变电感两端电压,从而在电感
http://www.szyxwkj.com/Article/dcdcdysjhx_1.html3星
[常见问题解答]开关电源工作原理与核心电路功能全解析[ 2025-04-11 10:56 ]
开关电源作为现代电子系统中高效率供电的关键部件,广泛应用于工业控制、通信设备、计算机系统及消费电子产品中。相较于线性电源,开关电源体积更小、能耗更低、输出稳定性更强。一、开关电源的基本工作原理开关电源的核心思想在于通过高速电子开关器件(如MOSFET)对输入电源进行快速通断控制,从而在变压器或电感中形成脉冲能量,再通过整流与滤波恢复为直流输出。其关键优势在于可以灵活调整开关占空比,进而实现对输出电压或电流的精准控制。在通电瞬间,控制电路激活开关器件,输入电能被间歇地注入磁性元件(变压器或电感)中,通过磁场能量的建立
http://www.szyxwkj.com/Article/kgdygzylyh_1.html3星
[常见问题解答]LLC与双管正激电源设计差异与选型指南[ 2025-04-08 12:17 ]
在电源设计领域,LLC谐振变换器与双管正激变换器是两种极具代表性的拓扑结构。它们各自拥有独特的性能优势,也面临不同的设计权衡。在具体选型时,工程师需要根据系统需求、负载特性、效率指标以及成本预算进行合理取舍。一、电路拓扑与工作原理差异LLC谐振变换器属于软开关拓扑,主要依靠电感与电容形成的谐振网络,实现近似正弦波的电流波形,从而达到降低开关损耗的目的。其开关管在零电压或零电流时导通,有效降低了MOSFET的损耗和EMI辐射。而双管正激结构则是传统的硬开关方案,两个功率管轮流导通实现能量传输。虽然在高频率条件下存在一
http://www.szyxwkj.com/Article/llcysgzjdy_1.html3星
[常见问题解答]从实战出发:DC-DC电感参数选择全解析[ 2025-03-28 11:33 ]
在DC-DC电源设计中,电感作为关键储能元件,其选型直接影响整个系统的效率、稳定性与电磁兼容性能。尽管许多应用中我们可以参考芯片手册推荐的参数,但真正落地到复杂或特殊应用场景时,设计人员往往需要深入理解电感的各项指标及其计算方式,才能确保转换器稳定运行。一、电感在DC-DC转换器中的作用以降压型(Buck)DC-DC为例,电感L位于开关管和输出之间,其核心作用是通过储存和释放能量,平滑输出电流,并实现能量的连续转移。在开关器件导通阶段,输入电压通过电感为负载和输出电容供能;而在开关器件关断后,电感会将前一周期储存的
http://www.szyxwkj.com/Article/cszcfdcdcd_1.html3星
[常见问题解答]浅析移相全桥变换器的工作过程与关键参数[ 2025-03-24 11:05 ]
在现代中高功率DC-DC变换场景中,移相全桥(Phase Shift Full Bridge, PSFB)因其优秀的软开关特性和良好的能效表现,被广泛应用于服务器电源、通信设备、工业控制、军工系统等领域。一、移相全桥变换器的基本构成移相全桥拓扑结构主要由以下几个部分组成:四个功率开关管(通常为MOSFET或IGBT)、输入滤波电容、变压器、谐振电感、以及副边整流与滤波电路。其中,原边四个开关器件构成一个桥式结构,对角的两个器件交替导通,用以实现移相控制。副边电路则采用全桥整流或全波整流方式,根据输出功率等级与效率需
http://www.szyxwkj.com/Article/qxyxqqbhqd_1.html3星
[常见问题解答]灵敏度谁更胜一筹?详解光敏电阻与光敏二极管的核心差异[ 2025-03-24 10:45 ]
在当今智能电子设备与光电感知系统迅猛发展的背景下,光敏元件作为关键组成部分之一,承担着将光信号转化为电信号的职责。常见的两类光敏器件——光敏电阻与光敏二极管,虽功能类似,但在结构、原理、性能表现等方面却有着本质性的差异。尤其是在“灵敏度”这一核心指标上,更是体现出截然不同的特性。一、光敏电阻:对微弱光照极为敏感光敏电阻,又称为光导电电阻,主要基于半导体材料(如硫化镉CdS)在受光照射下电阻值发生变化的原理。当环境中光线增强时,该元件的载流子数量迅速增加,导致其电阻值下
http://www.szyxwkj.com/Article/lmdsgsycxj_1.html3星
[常见问题解答]光敏元件可互换吗?揭示光敏二极管与光敏电阻的适用边界[ 2025-03-24 10:41 ]
在光控系统、智能照明、环境检测等多个领域中,光敏元件被广泛使用,其中以光敏二极管与光敏电阻最为常见。尽管它们在功能上都具备对光线的感知能力,但在设计选型时,是否可以直接相互替换,却是一个值得深入探讨的问题。一、光敏二极管与光敏电阻的原理区别从本质上看,光敏电阻和光敏二极管都属于光电感应器件,但其内部结构与工作机制存在明显差异。光敏电阻基于内光电效应,当光照强度增加时,器件内部半导体材料的导电率上升,表现为电阻值下降。它的响应方式并非以电流输出为主,而是阻值变化,通常用于检测光照强弱,通过串接分压或电桥方式获取输出信
http://www.szyxwkj.com/Article/gmyjkhhmjs_1.html3星
[常见问题解答]提升DC-DC转换器性能的PCB布局实用指南[ 2025-03-21 11:44 ]
在现代电子系统中,DC-DC转换器已成为不可或缺的电源模块。无论是在便携式设备、工业控制,还是在通信系统中,其效率和稳定性都直接影响整机的性能。而在实际应用中,DC-DC转换器的电路设计固然重要,但往往决定其性能上限的,是后期的PCB布局设计。合理的PCB布局不仅可以显著提升转换效率,还能有效降低噪声、抑制EMI干扰、延长器件寿命。1. 明确电流路径,优化环路布局一个关键原则是尽量缩短高电流路径,尤其是输入电容、开关管与电感之间的环路。这一环路中电流迅速切换,如果路径过长、走线过细,将不可避免地产生较大的寄生电感
http://www.szyxwkj.com/Article/tsdcdczhqx_1.html3星
[常见问题解答]DC-DC转换器电感计算方法详解,新手也能学会![ 2025-03-18 12:05 ]
DC-DC转换器在电子电路中扮演着重要角色,而电感则是其中关键的元件之一。合理选择电感值,能够优化电路的效率、降低纹波,并提高系统稳定性。很多工程师可能直接采用推荐值进行设计,但要真正理解并掌握电感的计算方法,才能更好地满足特定需求。一、电感在DC-DC转换器中的作用电感在DC-DC转换器中的主要作用是储能和滤波。在降压(Buck)转换器中,电感用于调节电流的变化,使得输出电压更加平稳。当开关管导通时,电感储存能量,而在关断时,电感释放能量,维持电流的连续性。如果电感值选择不当,会导致电流波动过大,影响电路性能,甚
http://www.szyxwkj.com/Article/dcdczhqdgj_1.html3星
[常见问题解答]BOOST与BUCK电路的PWM调压与模拟调压对比分析[ 2025-03-15 11:10 ]
在电源管理和电子电路设计中,升压(BOOST)与降压(BUCK)电路广泛应用于直流电压转换。而在调压过程中,PWM(脉冲宽度调制)调压和模拟调压是两种主要的方法。它们各具优势,适用于不同的应用场景。一、PWM调压与模拟调压的基本概念1. PWM调压:通过改变PWM信号的占空比来控制输出电压。开关管在高频率下切换,使电感、电容滤波后得到稳定的直流电压。这种方式主要依靠占空比调节,而非直接改变电流大小。2. 模拟调压:通过调整反馈回路中的模拟信号来控制输出电压。通常采用线性调整方式,如可变电阻、电流源控制等,直接影响电
http://www.szyxwkj.com/Article/boostybuck_1.html3星
[常见问题解答]MOS管选型常见误区:参数理解错误导致的严重后果[ 2025-03-14 12:06 ]
MOS管的选型对于电子电路设计至关重要,然而,许多工程师在选型过程中往往因为误读参数而导致严重后果,甚至直接造成产品失效。1. VDS耐压误判:忽视动态尖峰电压案例分析:某充电桩设计中,工程师选用了标称耐压650V的MOS管,然而,在实际测试中,因电路的关断尖峰高达720V,导致MOSFET大批量击穿,直接引发系统故障。误区解析:MOS管的VDS耐压通常指的是直流耐压值,而实际应用中,由于电感效应、寄生参数等因素,MOS管在开关瞬间可能会出现数十甚至上百伏的尖峰电压,如果设计时没有考虑这些动态尖峰,就容易导致MOS
http://www.szyxwkj.com/Article/mosgxxcjwq_1.html3星
[常见问题解答]升压电源短路故障:过电流问题及其影响分析[ 2025-03-01 11:49 ]
升压电源在电子电路中被广泛应用,能够有效地将较低电压转换为更高的稳定电压。然而,在实际应用过程中,负载短路可能会导致电源出现过电流问题,进而影响电路的正常运行,甚至损坏关键元器件。一、升压电源短路故障的成因升压电源的工作原理决定了其在短路情况下容易出现严重的过电流问题。以下是导致短路的几种常见原因:- 负载阻抗异常降低:当负载阻抗低于正常工作范围,输出端电流急剧上升,可能造成电路过载甚至短路。- 元器件失效:电感、电容或功率开关管(如MOSFET)在长时间工作后可能因老化或损坏导致短路。- PCB布线缺陷:设计不合
http://www.szyxwkj.com/Article/sydydlgzgd_1.html3星
[常见问题解答]逆导晶闸管是什么?其工作原理与特点解析[ 2025-02-26 11:17 ]
逆导晶闸管是一种特殊的电力半导体器件,在工业控制、能源转换和电力调节领域发挥着重要作用。由于其独特的结构设计,使其能够在特定电路环境下提供高效、稳定的电流控制。一、逆导晶闸管的基本概念逆导晶闸管(Reverse Conducting Thyristor,简称RCT),是一种集成了普通晶闸管与反并联续流二极管的电力半导体器件。与传统晶闸管相比,其最显著的特点在于内部集成了一只反向二极管,从而具备双向导通能力。这种集成方式的主要优势是减少了外部电路对续流二极管的依赖,优化了电路设计,同时降低了寄生电感,提高了器件的工作
http://www.szyxwkj.com/Article/ndjzgssmqg_1.html3星
[常见问题解答]DCDC开关电源与线性稳压器的核心区别及优缺点分析[ 2025-02-24 10:36 ]
在电子电路设计中,稳压器用于提供稳定的电压,以确保电路正常运行。常见的稳压方案包括DCDC开关电源(DC-DC转换器)和线性稳压器(LDO)。它们在能效、散热特性、工作原理以及应用场景上各具优势,适用于不同的供电需求。一、工作原理1. DCDC开关电源DCDC转换器采用高频开关模式,通过MOSFET等开关元件的快速切换,结合电感与电容的能量存储,实现直流电压的转换。它可以根据需求执行降压(Buck)、升压(Boost)或升降压(Buck-Boost)操作,使输出电压满足不同电路的供电要求。这种方式提高了能量转换效率
http://www.szyxwkj.com/Article/dcdckgdyyx_1.html3星

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号