收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
当前位置:首页 » 全站搜索 » 搜索:开关管
[常见问题解答]移相全桥拓扑结构与工作原理解析[ 2025-04-24 14:33 ]
移相全桥拓扑广泛应用于电力电子领域,特别是在高效能和高功率需求的场合。其独特的控制策略使得电路能够实现软开关,从而显著降低开关损耗,提高整体转换效率。一、移相全桥拓扑基本结构移相全桥拓扑的核心是基于全桥结构的电路,其中包括原边全桥电路、变压器以及副边整流电路。其主要功能是通过调节开关管的相位差来控制输出电压。1. 原边全桥电路移相全桥的原边电路由四个功率开关管(通常为MOSFET或IGBT)组成,分别标记为Q1、Q2、Q3和Q4。这些开关管按一定的顺序导通与关断,从而形成两组桥臂:超前桥臂(Q1、Q2)和滞后桥臂(
http://www.szyxwkj.com/Article/yxqqtpjgyg_1.html3星
[常见问题解答]反激准谐振电路的工作特点与优势分析[ 2025-04-23 11:19 ]
反激准谐振电路是一种广泛应用于电力电子领域的电路,尤其在开关电源、逆变器和变频器等设备中具有重要的地位。凭借其高效、紧凑的结构和优异的电磁兼容性,反激准谐振电路在现代电子技术中得到了广泛的应用。一、工作特点反激准谐振电路的基本工作原理是基于反激式转换器原理,并结合了准谐振的特性,使得电路在操作过程中能够减少开关管的损耗,提升整体效率。以下是该电路的主要工作特点:1. 高效的能量转换在反激准谐振电路中,开关管的开关频率和关断时的同步调节能够有效降低开关损耗。当开关管关断时,通过控制初级与次级电流的同步,使得变压器磁芯
http://www.szyxwkj.com/Article/fjzxzdldgz_1.html3星
[常见问题解答]正激式与反激式电源隔离:哪种方案更优?[ 2025-04-18 10:20 ]
在现代电源设计中,正激式和反激式电源隔离技术被广泛应用于各种应用场景中。它们各有优缺点,适用于不同的需求和设计条件。一、正激式电源的特点正激式电源是一种常见的隔离型电源拓扑结构,其主要特点是通过变压器实现输入与输出的电气隔离。正激式电源在工作时,能在变压器的主绕组上形成电流,通过正向导通的开关管,确保能量的高效传输。1. 优点- 高效率:正激式电源具有较高的效率,尤其是在大功率应用中,能够有效降低能量损失。- 电气隔离:正激式电源通过变压器提供电气隔离,有助于保护电路免受瞬态过电压和其他干扰。- 输出稳定性:由于其
http://www.szyxwkj.com/Article/zjsyfjsdyg_1.html3星
[常见问题解答]开关电源正激与反激结构差异详解:工作方式与适用场景全对比[ 2025-04-17 11:37 ]
在开关电源的诸多拓扑结构中,正激与反激是最常见的两种形式。它们在电路结构、能量传递方式以及实际应用场景上存在显著差异。正确理解这两种拓扑的特性,有助于工程师根据不同的设计需求做出最优选择。一、正激与反激的核心结构区别从电路结构上看,正激电源中的变压器一次绕组与开关管串联,当开关管导通时,能量立即通过变压器耦合到二次侧并供给负载。而反激电源则不同,它在开关管导通期间将能量储存在变压器的磁场中,随后在关断时由次级释放能量至负载,属于能量暂存型传输。反激变压器实质上是一个耦合电感器,其工作特性与普通变压器存在本质差别。它
http://www.szyxwkj.com/Article/kgdyzjyfjj_1.html3星
[常见问题解答]如何正确布置开关电源的输入电容?PCB设计中必须掌握的关键细节[ 2025-04-17 11:12 ]
在开关电源的设计实践中,输入电容的位置和连接方式对整个系统的性能有着直接影响。如果布置不当,不仅可能导致效率下降,还容易引起电磁干扰、瞬态响应迟缓等问题。因此,深入掌握输入电容的PCB设计要点,是电源工程师在布板时不可忽视的一项基本功。一、缩短电容至功率开关的连线距离输入电容的主要作用之一是为开关管提供稳定而迅速的电流支持。如果其与功率器件之间的连接路径过长,寄生电感会在开关动作时产生尖峰电压,影响电源的稳定性。最佳做法是将电容直接靠近MOSFET或电源芯片的VIN和GND引脚布放,确保电流通道短而宽,避免回路形成
http://www.szyxwkj.com/Article/rhzqbzkgdy_1.html3星
[常见问题解答]如何优化开关管RC吸收回路以提升电路效率[ 2025-04-14 14:51 ]
在电路设计中,开关管RC吸收回路的优化对于提升整体电路效率具有重要意义。RC吸收回路不仅能够有效地抑制开关瞬间产生的过冲与振铃,还能提高电路的稳定性和可靠性。首先,理解RC吸收回路的基本原理是优化的前提。RC吸收回路通常由电阻(R)和电容(C)组成,它们连接在开关管的集电极和地之间,主要用来吸收开关过程中的能量。RC吸收回路的工作原理是通过电容吸收高频瞬态能量,电阻则将其转化为热能,抑制了电路中的过冲与振铃现象。通过合理选择RC值,可以有效控制电路的噪声和电磁干扰(EMI),从而改善电路的整体性能。在优化RC吸收回
http://www.szyxwkj.com/Article/rhyhkggrcx_1.html3星
[常见问题解答]优化开关电源设计以降低导通损耗的有效方法[ 2025-04-10 12:18 ]
在现代电子设备中,开关电源因其高效、体积小、成本低等优势,广泛应用于各种消费电子、工业控制以及通信系统中。然而,随着电子产品功能日益复杂,电源的导通损耗问题逐渐突显,成为限制系统性能提升的瓶颈之一。导通损耗不仅影响系统效率,还会导致系统发热,从而影响元件寿命和工作稳定性。因此,优化开关电源设计以降低导通损耗,已成为提升电源效率和延长设备使用寿命的关键任务。1. 精选低导通电阻开关管在开关电源中,开关管是决定导通损耗的关键组成部分。通过降低开关管的导通电阻(RDS(on))可以减少导通损耗。因此,使用具有低导通电阻的
http://www.szyxwkj.com/Article/yhkgdysjyj_1.html3星
[常见问题解答]强制关断电路在有源箝位中的应用与优化[ 2025-04-09 11:43 ]
随着现代电源设计的不断发展,有源箝位电路逐渐成为提升功率转换效率、减小电磁干扰(EMI)及降低开关损耗的关键技术之一。尤其是在变换器中,有源箝位电路能够通过控制开关管的开关过程,减轻其关断时的应力,避免电流和电压的突变,改善系统性能。然而,在一些特定的工作环境下,如输出端带大电容的关机下电过程中,箝位电路可能会出现一定的振荡现象,影响电源的稳定性和后级设备的正常启动。为了解决这一问题,强制关断电路的引入成为一种有效的优化手段。一、强制关断电路的工作原理在有源箝位电路中,箝位管(通常为MOSFET)用于限制电流和电压
http://www.szyxwkj.com/Article/qzgddlzyyq_1.html3星
[常见问题解答]LLC与双管正激电源设计差异与选型指南[ 2025-04-08 12:17 ]
在电源设计领域,LLC谐振变换器与双管正激变换器是两种极具代表性的拓扑结构。它们各自拥有独特的性能优势,也面临不同的设计权衡。在具体选型时,工程师需要根据系统需求、负载特性、效率指标以及成本预算进行合理取舍。一、电路拓扑与工作原理差异LLC谐振变换器属于软开关拓扑,主要依靠电感与电容形成的谐振网络,实现近似正弦波的电流波形,从而达到降低开关损耗的目的。其开关管在零电压或零电流时导通,有效降低了MOSFET的损耗和EMI辐射。而双管正激结构则是传统的硬开关方案,两个功率管轮流导通实现能量传输。虽然在高频率条件下存在一
http://www.szyxwkj.com/Article/llcysgzjdy_1.html3星
[常见问题解答]移相全桥中移相角调节机制详解:原理与实现方法[ 2025-04-03 12:01 ]
在现代电力电子变换技术中,移相全桥电路凭借其高效率、输出稳定、响应快速等优点,被广泛应用于高压直流变换器、电机驱动、电池充电系统及光伏逆变器等场合。移相全桥的核心控制参数之一便是移相角,它不仅决定了功率传输的大小,还直接影响到系统的效率、输出波形与稳定性。一、移相全桥电路简述与工作特性移相全桥(Phase-Shifted Full-Bridge, PSFB)由两组半桥组成,四个功率开关(如MOSFET或IGBT)构成一个全桥拓扑。通常在开关管两端配置反并联二极管,并搭配高频变压器以及整流滤波网络完成电能传输。其运行
http://www.szyxwkj.com/Article/yxqqzyxjdj_1.html3星
[常见问题解答]从实战出发:DC-DC电感参数选择全解析[ 2025-03-28 11:33 ]
在DC-DC电源设计中,电感作为关键储能元件,其选型直接影响整个系统的效率、稳定性与电磁兼容性能。尽管许多应用中我们可以参考芯片手册推荐的参数,但真正落地到复杂或特殊应用场景时,设计人员往往需要深入理解电感的各项指标及其计算方式,才能确保转换器稳定运行。一、电感在DC-DC转换器中的作用以降压型(Buck)DC-DC为例,电感L位于开关管和输出之间,其核心作用是通过储存和释放能量,平滑输出电流,并实现能量的连续转移。在开关器件导通阶段,输入电压通过电感为负载和输出电容供能;而在开关器件关断后,电感会将前一周期储存的
http://www.szyxwkj.com/Article/cszcfdcdcd_1.html3星
[常见问题解答]1500W电源设计该选双管正激还是半桥拓扑?深度对比分析[ 2025-03-25 15:06 ]
在电源设计领域,1500W这个功率等级处于一个既要求高效率又考验热设计的敏感区域。工程师在此区间做拓扑结构选择时,往往面临“选双管正激还是半桥”的技术抉择。这不仅关乎系统性能,还涉及到成本控制、体积限制、设计复杂度等多方面因素。一、双管正激:效率优先,控制精细双管正激拓扑是一种以变压器为核心、两只主开关管交替导通的非对称结构。该方案在中高功率段(如1500W)应用较为广泛,尤其适合对效率和控制要求较高的场合。1. 转换效率出色由于双管正激结构在开关过程中能够实现变压器磁通的自动复位,减少磁滞
http://www.szyxwkj.com/Article/1500wdysjg_1.html3星
[常见问题解答]浅析移相全桥变换器的工作过程与关键参数[ 2025-03-24 11:05 ]
在现代中高功率DC-DC变换场景中,移相全桥(Phase Shift Full Bridge, PSFB)因其优秀的软开关特性和良好的能效表现,被广泛应用于服务器电源、通信设备、工业控制、军工系统等领域。一、移相全桥变换器的基本构成移相全桥拓扑结构主要由以下几个部分组成:四个功率开关管(通常为MOSFET或IGBT)、输入滤波电容、变压器、谐振电感、以及副边整流与滤波电路。其中,原边四个开关器件构成一个桥式结构,对角的两个器件交替导通,用以实现移相控制。副边电路则采用全桥整流或全波整流方式,根据输出功率等级与效率需
http://www.szyxwkj.com/Article/qxyxqqbhqd_1.html3星
[常见问题解答]场效应晶体管选型指南:关键参数与应用匹配解析[ 2025-03-22 11:09 ]
在现代电子设计中,场效应晶体管(FET)作为基础而关键的器件,广泛应用于放大、开关、电源控制、信号处理等各类电路中。面对市场上种类繁多、参数复杂的FET型号,如何科学、合理地选型,成为工程师面临的第一道难题。一、明确电路角色:选型的前提选型之前,首要的是搞清楚FET在整个电路中扮演的角色。是作为高频开关管,还是低噪声信号放大元件?比如在一个DC-DC降压电源中,MOSFET通常承担着高速开关的任务,对开关速度和导通损耗要求很高;而在前级模拟放大器中,JFET则更受青睐,因为其低噪声和良好的线性度更适合信号调理。二、
http://www.szyxwkj.com/Article/cxyjtgxxzn_1.html3星
[常见问题解答]提升DC-DC转换器性能的PCB布局实用指南[ 2025-03-21 11:44 ]
在现代电子系统中,DC-DC转换器已成为不可或缺的电源模块。无论是在便携式设备、工业控制,还是在通信系统中,其效率和稳定性都直接影响整机的性能。而在实际应用中,DC-DC转换器的电路设计固然重要,但往往决定其性能上限的,是后期的PCB布局设计。合理的PCB布局不仅可以显著提升转换效率,还能有效降低噪声、抑制EMI干扰、延长器件寿命。1. 明确电流路径,优化环路布局一个关键原则是尽量缩短高电流路径,尤其是输入电容、开关管与电感之间的环路。这一环路中电流迅速切换,如果路径过长、走线过细,将不可避免地产生较大的寄生电感,
http://www.szyxwkj.com/Article/tsdcdczhqx_1.html3星
[常见问题解答]DC-DC转换器电感计算方法详解,新手也能学会![ 2025-03-18 12:05 ]
DC-DC转换器在电子电路中扮演着重要角色,而电感则是其中关键的元件之一。合理选择电感值,能够优化电路的效率、降低纹波,并提高系统稳定性。很多工程师可能直接采用推荐值进行设计,但要真正理解并掌握电感的计算方法,才能更好地满足特定需求。一、电感在DC-DC转换器中的作用电感在DC-DC转换器中的主要作用是储能和滤波。在降压(Buck)转换器中,电感用于调节电流的变化,使得输出电压更加平稳。当开关管导通时,电感储存能量,而在关断时,电感释放能量,维持电流的连续性。如果电感值选择不当,会导致电流波动过大,影响电路性能,甚
http://www.szyxwkj.com/Article/dcdczhqdgj_1.html3星
[常见问题解答]开关电源如何产生EMC干扰?关键机制深度解析[ 2025-03-15 11:37 ]
开关电源的电磁兼容(EMC)干扰问题是电子工程中的重要挑战,特别是在高频开关技术广泛应用的背景下,电磁干扰(EMI)问题日益突出。这类干扰不仅可能降低设备自身的性能,还可能影响周围电子设备的正常工作。因此,掌握EMC干扰的成因,有助于工程师优化电路设计,提升系统的稳定性和可靠性。一、开关电源的工作原理与干扰根源开关电源的基本原理是利用高频开关管(如MOSFET、IGBT等)在高频率下进行快速开关操作,将电能转换成所需的稳定直流电压。其核心过程包括开关调制、电能传输和滤波整流。虽然这种工作模式相比线性电源具有更高的效
http://www.szyxwkj.com/Article/kgdyrhcsem_1.html3星
[常见问题解答]BOOST与BUCK电路的PWM调压与模拟调压对比分析[ 2025-03-15 11:10 ]
在电源管理和电子电路设计中,升压(BOOST)与降压(BUCK)电路广泛应用于直流电压转换。而在调压过程中,PWM(脉冲宽度调制)调压和模拟调压是两种主要的方法。它们各具优势,适用于不同的应用场景。一、PWM调压与模拟调压的基本概念1. PWM调压:通过改变PWM信号的占空比来控制输出电压。开关管在高频率下切换,使电感、电容滤波后得到稳定的直流电压。这种方式主要依靠占空比调节,而非直接改变电流大小。2. 模拟调压:通过调整反馈回路中的模拟信号来控制输出电压。通常采用线性调整方式,如可变电阻、电流源控制等,直接影响电
http://www.szyxwkj.com/Article/boostybuck_1.html3星
[常见问题解答]降低电源损耗:开关电源缓冲电路的设计技巧[ 2025-03-15 10:51 ]
在现代电子设备的电源设计中,提高效率和降低损耗是关键目标之一。特别是在高频开关电源中,开关损耗和寄生参数导致的能量损失会影响电路的整体性能。缓冲电路在减小开关电源中的损耗、改善电压尖峰、提高功率器件可靠性等方面起着至关重要的作用。一、开关电源损耗的主要来源开关电源的损耗主要包括导通损耗、开关损耗以及由于寄生参数导致的损耗。1. 导通损耗:当开关管(如MOSFET或IGBT)导通时,管内电阻(Rds(on))会产生一定的功率损耗,损耗大小与电流平方成正比。2. 开关损耗:在开关管开通和关断的瞬间,由于电流和电压的变化
http://www.szyxwkj.com/Article/jddyshkgdy_1.html3星
[常见问题解答]双管正激电路深度解析与实际应用[ 2025-03-15 10:44 ]
双管正激电路在开关电源和高效能变换器领域中占据重要位置,其高效能量传输和磁复位特性,使其广泛应用于工业电源、服务器电源及新能源设备。一、双管正激电路的拓扑结构双管正激电路是正激式变换器的一种拓展,它采用两个功率开关管来分担电压应力,并借助变压器提供能量传递与隔离。其典型电路结构由输入滤波电容、主功率开关、变压器、整流二极管及输出滤波组件组成。在传统的单管正激拓扑中,功率开关管需承受两倍于输入电压的电压应力,而双管正激电路通过两颗功率MOSFET并联工作,使其电压应力降低至输入电压的水平,大大提升了电路的可靠性与耐压
http://www.szyxwkj.com/Article/sgzjdlsdjx_1.html3星

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号