收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

深圳市壹芯微科技有限公司二极管·三极管·MOS管·桥堆

全国服务热线:13534146615

壹芯微二极管
当前位置:首页 » 全站搜索 » 搜索:驱动电压
[常见问题解答]如何选择合适的MOS管?参数对比与实战选型技巧[ 2025-04-19 10:31 ]
在实际电子设计与电源开发过程中,MOS管作为一种常用的功率器件,承担着开关、调速、稳压等关键任务。面对市场上琳琅满目的型号,如何高效且精准地选出一款既匹配电路性能又具备性价比的MOS管,是每一位工程师在设计初期必须解决的问题。一、栅源开启电压(Vgs(th))的判读逻辑Vgs(th)并非MOS真正导通的工作电压,而只是一个临界点。一般当栅源电压达到Vgs(th)时,管子刚刚开始导通,导通电流还较小。实战中应选择高于Vgs(th)几倍的驱动电压,确保MOS管完全进入线性导通区。比如Vgs(th)为3V的器件,建议使用
http://www.szyxwkj.com/Article/rhxzhsdmos_1.html3星
[常见问题解答]新能源汽车OBC用SiC MOS驱动模块设计思路与供电方案全流程剖析[ 2025-04-17 14:45 ]
OBC(车载充电机)在新能源汽车的电气系统中,是连接电网与动力电池的关键部件,负责交流转直流、充电管理和电能转换。随着 SiC MOSFET 在高压高速开关领域得到广泛应用,其在 OBC DC/DC 转换阶段的应用也越来越普遍。实现整体性能优化的关键是高效设计驱动模块及其供电系统。一、驱动模块的设计思路解析1. 选择合适的驱动电压范围SiC MOSFET一般工作于较高的栅压要求,典型驱动电压为+18V/-5V或+20V/-5V。在设计驱动模块时,需要优先确保驱动芯片具备双向电压能力,避免开关迟滞或关断不彻底的问题。
http://www.szyxwkj.com/Article/xnyqcobcys_1.html3星
[常见问题解答]GaN MOS驱动电路设计要点与实战技巧[ 2025-04-12 10:40 ]
随着氮化镓(GaN)MOSFET器件在电力电子和高频开关电源领域的广泛应用,其驱动电路的设计逐渐成为工程开发中的关键技术之一。得益于GaN器件高开关速度、低损耗和高电压承受能力的特性,合理而高效的驱动设计不仅直接影响电路性能,还决定了系统稳定性和使用寿命。一、驱动GaN MOS管的核心设计挑战氮化镓MOS管虽然性能优越,但与传统硅MOS相比,其在驱动环节存在显著差异。以下几点是GaN驱动设计时常见且必须重点关注的技术难题:1. 栅极耐压低GaN MOS栅极耐压普遍只有6V~10V,远低于Si MOS。因此,驱动电压
http://www.szyxwkj.com/Article/ganmosqddl_1.html3星
[常见问题解答]MOS管驱动电压充不满怎么办?开关电源常见问题分析[ 2025-04-11 10:40 ]
在开关电源设计与调试过程中,MOS管的栅极驱动电压能否快速、稳定充满,直接影响着电路的正常工作。特别是在大功率或高频应用场景中,MOS管的驱动问题极易暴露,各类意想不到的异常情况层出不穷。很多工程师在实际调试中经常会遇到这样的问题:MOS管的栅极电压始终无法达到预期的幅值,导致开关动作不可靠,甚至出现严重的损坏隐患。那么,栅极驱动电压充不满到底可能有哪些原因?该如何针对性排查和处理?一、驱动电阻选型不当MOS管的栅极实际等效为一个大电容,驱动时的充放电速度与驱动源的能力和串联电阻关系密切。若驱动电阻阻值偏大,将直接
http://www.szyxwkj.com/Article/mosgqddycb_1.html3星
[常见问题解答]为何N沟道MOSFET在功率开关与信号调理中更具优势?[ 2025-03-25 12:13 ]
在现代电子系统中,无论是智能电源、通信设备,还是汽车电子、工业自动化控制,功率开关与信号调理都是极为重要的电路模块。选用何种器件,决定了电路的效率、可靠性与响应速度。在诸多方案中,N沟道MOSFET凭借其独特的物理结构和优异的电气特性,成为上述应用中的主力器件。一、电子迁移率高,导通效率更优N沟道MOSFET的主要载流子是电子,而电子的迁移率要远高于空穴(P型MOSFET中的主要载流子)。在相同的驱动电压和器件尺寸条件下,N型MOSFET能够实现更低的导通电阻(R<sub>DS(on)</sub&
http://www.szyxwkj.com/Article/whngdmosfe_1.html3星
[常见问题解答]如何选择自举电路中的电容值?关键参数解析[ 2025-03-17 10:18 ]
自举电路在高压栅极驱动应用中扮演着关键角色,它能提供稳定的高端驱动电压,提高功率开关的效率和可靠性。在设计自举电路时,自举电容的选型至关重要,它的容值大小、耐压要求及其与电路的匹配程度,都会影响驱动电路的性能。 一、自举电路的基本工作原理 自举电路广泛应用于高压栅极驱动电路,特别是在使用N沟道MOSFET或IGBT作为高端开关的情况下。由于MOSFET或IGBT的栅极需要一个高于源极的驱动电压(通常为VDD + 10V~15V),直接使用单一电
http://www.szyxwkj.com/Article/rhxzzjdlzd_1.html3星
[常见问题解答]如何选择合适的IGBT驱动器:关键考虑因素解析[ 2024-12-09 15:09 ]
IGBT驱动器(绝缘栅双极晶体管)在现代电力电子系统中发挥着关键作用。无论是在能源转换、工业自动化还是电动汽车领域,IGBT驱动器的性能直接影响整个系统的效率和可靠性。因此,工程师在选择合适的IGBT驱动器时必须考虑几个因素。一、明智选择首先,您需要明确驱动器的工作电压和电流范围。不同类型的IGBT需要不同的驱动电压和电流。例如,对于低额定电压的IGBT,低压驱动器是高压IGBT的良好首选。选择时还应考虑驱动电流的峰值、平均值和脉冲宽度。电流不匹配可能会导致驱动器性能不稳定或组件损坏。二、保护功能IGBT通常在高温
http://www.szyxwkj.com/Article/rhxzhsdigb_1.html3星
[常见问题解答]开关MOS管温升过高?看看这些可能的原因[ 2024-10-12 15:15 ]
开关MOS管广泛应用于现代电子设备中,特别是在电源管理和电机驱动方面。然而,MOS管的温升问题常常困扰工程师,尤其是在高频开关应用中,过高的温度会导致性能下降和元件损坏。本文详细分析了开关MOS管温升过高的最常见原因,并介绍了一些对策,以帮助更好的设计和优化。一、导通电阻和功率损耗1. 当MOS管处于导通状态时,沟道中存在一定的电阻,称为导通电阻(RDS(on)),它会产生热量,导致温度过度升高。在设计时,导通电阻的大小通常由器件制造工艺、栅极驱动电压和工作温度等因素决定。2. 选择低导通电阻的管子可以减少功耗和沟
http://www.szyxwkj.com/Article/kgmosgwsgg_1.html3星
[常见问题解答]深入探讨:碳化硅在先进电子设备中的关键作用[ 2024-07-30 12:11 ]
1. 碳化硅MOSFET的驱动门极电压与导通电阻之谜研究表明,SiC MOSFET的漂移层阻抗远低于Si MOSFET,但其沟道迁移率较低,导致阻抗略高。因此,提升门极电压有助于降低导通电阻。使用Vgs=18V的驱动电压,可以最大化其低导通电阻的性能,推荐负压设置为约-3。此外,市场上已有Vgs=15V和预计将推出Vgs=12V的碳化硅MOSFET,旨在与硅基器件的驱动电压统一。2. SiC器件与传统硅器件的对比SiC器件的绝缘击穿场强是Si的10倍,允许使用更薄的漂移层来实现高耐压。因此,在相同耐压下,SiC的标
http://www.szyxwkj.com/Article/srttthgzxj_1.html3星
[常见问题解答]优化MOS管开关性能:应对米勒效应的最新技术与方法[ 2024-05-27 10:48 ]
一、MOSFET的驱动机制与米勒平台在电路设计中,MOSFET的栅极驱动过程至关重要,涉及对MOSFET输入电容的充放电,尤其是栅源极电容Cgs。一旦Cgs电荷达到门槛电压,MOSFET即切换至开启状态。接着,随着Vds下降和Id上升,MOSFET进入饱和区。然而,由于米勒效应,Vgs在一段时间内停滞,即使此时Id已达最大值,Vds仍在下降,直至米勒电容充满电。再次将Vgs上升至驱动电压时,MOSFET进入电阻区,Vds彻底下降至最低,完成开启过程。米勒电容的存在限制了Vgs上升速度,影响了Vds下降速度,因此延长
http://www.szyxwkj.com/Article/yhmosgkgxn_1.html3星
[技术文章]FDD86250 典型应用电路[ 2024-05-16 15:09 ]
FDD86250是一款功率场效应晶体管(MOSFET),常见于各种电力电子应用中。它的应用场景非常广泛,包括但不限于电源管理、电机驱动、逆变器等领域。下面将详细介绍FDD86250的参数特点以及应用场景。一、参数特点:- 低导通电阻: FDD86250具有低导通电阻特性,这意味着在导通状态下,可以实现较低的电压降,从而减少功耗和提高效率。- 高开关速度: FDD86250具有快速的开关速度,这使其在高频应用中表现出色,能够实现快速的开关操作,提高系统响应速度。- 低驱动电压: 由于FDD86250的低阈值电压,它需
http://www.szyxwkj.com/Article/fdd86250dx_1.html3星
[常见问题解答]选择三极管驱动单片机I/O口的五大原因:为什么MOS管不是首选?[ 2024-05-13 10:38 ]
我们首先需要解答两个问题:为何单片机的I/O端口不直接驱动负载,以及在单片机设计中,为什么常采用三极管而非MOS管?单片机的I/O口虽具备一定的驱动能力,但因电流较低,一般不超过20mA,这使得其直接驱动较大负载成为不可能。进一步讨论,单片机通常偏好采用三极管,这与它们的控制特性有关。三极管作为电流控制器件,其基极驱动电压一旦超过0.7V(Ube)即可导通,而MOS管则需其驱动电压高于阈值电压(Vgs(TH)),这一阈值通常介于3-5V之间。实际应用中,鉴于单片机的供电电压普遍为3.3V,三极管能轻松达到饱和状态,
http://www.szyxwkj.com/Article/xzsjgqddpj_1.html3星
[常见问题解答]功率MOSFET的正反向导通等效电路解析[ 2023-08-24 18:06 ]
功率MOSFET的正反向导通等效电路解析功率MOSFET的正向导通等效电路(1):等效电路(2):说明:功率 MOSFET 正向导通时可用一电阻等效,该电阻与温度有关,温度升高,该电阻变大;它还与门极驱动电压的大小有关,驱动电压升高,该电阻变小。详细的关系曲线可从手册中获得。功率MOSFET的反向导通等效电路(1)    (1):等效电路(门极不加控制)(2):说明:即内部二极管的等效电路,可用一电压降等效,此二极管为MOSFET 的体二极管,多数情况下,因其特性很差,要避免使用。功率
http://www.szyxwkj.com/Article/glmosfetdz_1.html3星
[常见问题解答]电路分享,三极管继电器驱动电路介绍[ 2023-08-04 17:09 ]
电路分享,三极管继电器驱动电路介绍一.前言继电器是用的比较多的开关器件,基本的原理就是通过给电磁线圈充放电来控制触点的吸合与端口,是典型的小信号电流控制大电流负载的器件。当驱动继电器工作时,需要给继电器线圈施加直流电压,由于线圈电阻一般不大,所以需要的驱动电流比较大,所以我们不能直接用单片机IO口来驱动继电器,一般是采用集成IC比如2003芯片,或者三极管来驱动继电器工作,需要通过MCU控制三极管的通断,进而通过三极管的通断来控制继电器线圈的通断。二.继电器驱动电路讲解1.确定继电器线圈驱动电压;继电器线圈吸合电压
http://www.szyxwkj.com/Article/dlfxsjgjdq_1.html3星
[常见问题解答]PFC中功率MOSFET的一种失效形式介绍[ 2023-06-30 17:41 ]
PFC中功率MOSFET的一种失效形式介绍TV、户外LED照明等功率比较大的电源系统中,通常输入端使用PFC功率因素校正电路。系统反复起动的过程中,如系统动态老化Burn In测试、输入打火测试,由于PFC控制芯片的供电VCC电源建立过程比较慢,特别是使用PFC的电感绕组给PFC控制芯片供电的情况,会导致功率MOSFET管的驱动在起动的过程中,由于驱动电压不足,容易进入线性区工作,功率MOSFET反复不断的进入线性区工作,工作一段时间后,就会形成局部热点而损坏。例1:户外LED照明电源,拓扑结构为PFC+LLC,P
http://www.szyxwkj.com/Article/pfczglmosf_1.html3星
[常见问题解答]怎么处理栅极误导通的方法介绍[ 2023-05-17 18:20 ]
怎么处理栅极误导通的方法介绍栅极误导通”的抑制方法栅极误导通的对策方法有三种。①是通过将Vgs降至负电压(而非0V),使Vgs即使上升也不会达到阈值的增加余量方法。这种方法需要负的栅极驱动电压,所以栅极驱动器的电源要使用+18V/-3V这样的不对称的两个电源。在这种情况下,需要将负电压设置为不超过Vgs的最大额定值。②是在栅极-源极间增加外置电容器,降低阻抗,抑制栅极电位升高的方法。这里需要注意的是CGS也会造成损耗,因而需要适当的电容。③是在栅极-源极间增加米勒钳位用MOSFET的方法。通过在SiC-
http://www.szyxwkj.com/Article/zmclzjwdtd_1.html3星
[常见问题解答]怎么计算IGBT驱动电流及驱动功率[ 2023-05-08 17:32 ]
怎么计算IGBT驱动电流及驱动功率IGBT驱动电路的设计包括上下桥绝缘水平的选择、驱动电压水平的确定、驱动芯片驱动功率的确定、短路保护电路等等。今天我们重点讨论一下驱动电流以及功率的确定,也就是说如何确定一个驱动芯片电流能力是不是可以驱动一个特定型号的IGBT,如果不能驱动该如何增强驱动输出能力。01.驱动芯片峰值电流的计算在选择IGBT驱动芯片时,很重要的一步就是计算IGBT所需要的最大驱动电流,在不考虑门极增加Cge电容的条件下,可以把IGBT驱动环节简化为一个RLC电路,如下图阴影部分所示。求解这个电路可以得
http://www.szyxwkj.com/Article/zmjsigbtqd_1.html3星
[常见问题解答]三极管推挽电路设计介绍[ 2023-02-23 16:10 ]
当驱动光耦的输出能力无法满足IGBT门极驱动电流的要求时,要选择使用推挽驱动。(1) IGBT门极峰值电流计算IGBT门极峰值电流Imax=0.74*△VGE/(Rg+Rint)△VGE为IGBT驱动电压变化量,Rg为外加门极电阻,Rint为门极内部电阻,0.74为考虑到驱动器内阻和引线电感而设置的校正系数。假设IGBT在开通和关断的过程中,门极等效电容Cge恒定。 对于IGBT门极回路可列出微分方程Ld2iG(t)/dt2+RdiG(t)/dt+1/CGE*iG(t)=0求解方程(4)得到Imax的表达式(5),
http://www.szyxwkj.com/Article/sjgtwdlsjj_1.html3星
[常见问题解答]使用二极管补偿电路实现的稳压器电源电路设计介绍[ 2022-11-23 17:11 ]
下表列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高
http://www.szyxwkj.com/Article/syejgbcdls_1.html3星
[常见问题解答]基于IRF7201 MOSFET的5V转3.3V开关电源电路设计介绍[ 2022-11-05 12:02 ]
在选择与 3.3V 单片机配合使用的外部 N 沟道MOSFET  时,一定要小心。MOSFET 栅极阈值电压表明了器件完全饱和的能力。对于 3.3V 应用,所选 MOSFET 的额定导通电阻应针对 3V  或更小的栅极驱动电压。例如,对于具有 3.3V 驱动的100 mA负载,额定漏极电流为250 μA的FET在栅极 - 源极施加 1V  电压时,不一定能提供满意的结果。在从 5V 转换到 3V 技术时,应仔细检查栅极- 源极阈值和导通电阻特性参数,如图  1所示。稍微减少栅
http://www.szyxwkj.com/Article/jyirf7201m_1.html3星

地 址/Address

工厂地址:安徽省六安市金寨产业园区
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579535

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备2020121154号