收藏壹芯微 | 在线留言| 网站地图

您好!欢迎光临壹芯微科技品牌官网

壹芯微

“壹芯”做好二、三极管各式优质二、三极管选壹芯微

全国服务热线:13534146615

壹芯微二极管
首页 » 壹芯微资讯中心 » 常见问题解答 » MOS电容-MOS管高频小信号电容知识

MOS电容-MOS管高频小信号电容知识

返回列表来源:壹芯微 发布日期 2019-06-11 浏览:-

壹芯微作为国内专业生产二三极管的生产厂家,生产技术已经是非常的成熟,进口的测试仪器,可以很好的帮组到客户朋友稳定好品质,也有专业的工程师在把控稳定质量,协助客户朋友解决一直客户自身解决不了的问题,每天会分享一些知识或者客户的一些问题,今天我们分享的是,三端稳压管7805结构参数与接线图解析,请看下方

从MOS管的几何构造及工作原理能够发现,MOS管存在着多种电容,这会影响MOS管的高频性能。

依据MOS管的几何构造构成的各类电容如图1.5所示,详细为:

MOS电容

(1)栅与沟道之间的栅氧电容C2=WLCox,其MOS电容中Cox为单位面积栅氧电容ε0x/tox。

(2)沟道耗尽层电容C3=W):其中q为电子电荷,εsi硅的介电常数,Nsub为衬底浓度,φF为费米能级。

(3)交叠电容(多晶栅掩盖源/漏区所构成的电容),每单位宽度的交堯电容记为Col,由于是环状的电场线,Col不能简单计算得到,且它的值与衬底偏置有关。交叠电容主要有栅/源交叠电容Cl= WCol与栅/漏交叠电容C4= WCol。

(4)源/漏区与衬底间的结电容:Cbd, Cbs,即为漏极、源极与衬底之间构成的PN结势垒电容,这种电容普通由两局部组成:一局部是垂直方向(即源/漏区的底部与衬底间)的底层电容,以单位面积PN结电容Cj权衡;另—局部是源/漏区的周围与衬底间构成的横向圆周电容,以单位长度结电容Cjs来衡最。单位面积PN结的势垒电容Cj可表示为:

Cj=Cjo/[1+VR/φB]m

式(1.1)中Cjo为PN在零偏电压时单位底面积结电容(与衬底浓度有关),VR是加于PN结的反偏电压,φB是漏/源区与衬底问的PN结接触势垒差(普通取0.8V),而m是底面电容的梯度因子,普通取介于0.3~0.4间的值。

因而,MOS管源/漏区与衬底间总的结电容可表示为:

CBD.BS=WHCj+2(W+H)Cjs

式(1.2)中H是指源、漏区的长度,W是MOS管的宽度。

由式(1.2)可发现:不同MOS管的源/漏区的几何外形,即不同的源/漏区面积和圆周尺寸值,存在着不同的结电容。在总的宽长比相同的状况下,采用并联合构,即MOS管的H不变,而每一个MOS管的宽为原来的几分之一,则MOS管的源/漏区与衬底间总的结电容比原构造小。

例1.2 分别求出以下三种条件下MOS管源/漏区与衬底间总的结电容(假定任何,个MOS管的源/漏区的长度都为H):

①(W/L)=100的一个MOS管;

②(W/L)1,2=50两个MOS管并联;

③(WIL)1~5=20的5个MOS管并联。

解:为了计算便当,假定一切MOS管的沟道长度L=0.5μm,H=lμm则有

①CBD,BS:WHCj+2(W+H)Cjs=200Cj+402Cjs

所以总的源/漏区与衬底问的结电容为Cbd+Cbs=400Cj+804Cjs

②Cbdl, 2=Cbs1=Cbs2=100Cj+202Cjs

所以总的源/漏区与衬底间的结电容为Cbd1十Cbs1+Cbd2=300Cj+606Cjs

③Cbd1,2=Cbd3,4=Cbd5=Cbs1=Cbs2,3=Cbs4, 5=40Cj+82Cjs

所以总的源/漏区与衬底间的结电容为

Cbdl,2+Cbd3, 4+Cbsl+Cbs2, 3+Cbs4,5+Cbd5=240Cj+492Cjs

2.MOS管的极间电容及其随栅/源电压的变化关系

由于在模仿集成电路中,MOS管普通以四端器件出现,因而在实践电路设计中主要思索MOS管每两个端口之间存在的电容,如图1.6所示,源/漏两极之间的电容很小可疏忽不计,这些电容的值就是由前面剖析的各种电容组合而成,由丁在不同的工作区时MOS管的反型层厚度、耗尽层厚度等不同,则相应的电容也不相同,所以关于MOS管的极问电容能够分为三个工作辨别别停止讨论。

MOS电容

(1)截止区

漏/源之间没有构成沟道,此时固然不存在反型层,但可能产生了耗尽层,则有栅/源之间、栅/漏之间的电容为:CGD=CGS= WCol;

栅极与衬底间的电容为:CGB=(WLCox)Cd/(WLCox+Cd),即栅氧电容与耗尽层电容Cd的串联,其中乙为沟道的有效长度,且MOS电容

CSB与CDB的值分别是源极、漏极与衬底间电压的函数,能够由式(1.2)求解出。

(2)饱和区

在此工作区,MOS管的沟道在漏端曾经发作夹断,所以栅/漏电容CGD大约为WCol;同时MOS管的有效沟道长度缩短,栅与沟道间的电位差从源区的VGS降落到夹断点的VGS-Vth导致了在栅氧下的沟道内的垂直电场的不分歧,能够证明此时MOS管的栅+源间电容除了过覆盖电容之外的电容值可表示为(2/3)N1Cox。因而

CGS=2WLCox/3+WCol    (1.3)

(3)深线性区

在此工作区,漏极D与源极s的电位简直相同,栅电压变化AV时,惹起等量的电荷从 源极流向漏极,所以栅氧电容(栅与沟道间的电容)WLCox、F均分为栅/源端之间与栅/漏端之间的电容,此时栅/源电容与栅/漏电容可表示为

CGD=CGS=WLCox/2+WCol

当工作在线性区与饱和区时,栅与衬底间的电容常被疏忽,这是由于反型层在栅与衬底间起着屏蔽作用,也就是说假如栅压发作了改动,导电电荷的提供主要由源极提供而流向漏极,而不是由衬底提供导电荷。

CGD与CGS在不同工作区域的值如图1.7所示,留意在不同的区域之间的转变不能简单计算得到,只是依据趋向停止延伸而得。

MOS电容

壹芯微科技针对二三极管作出了良好的性能测试,应用各大领域,如果您有遇到什么需要帮助解决的,可以点击右边的工程师,或者点击销售经理给您精准的报价以及产品介绍

推荐阅读

【本文标签】:二极管 快恢复二极管 整流二极管 桥堆 肖特基二极管

【责任编辑】:壹芯微 版权所有:http://www.szyxwkj.com/转载请注明出处

最新资讯

1分析mos芯片输出驱动为什么一般用pmos做上管 nmos做下管

2MOS管知识-一清晰区分MOS NMOS PMOS CMOS(从原理的视角)

3mos管功耗-mos管功耗计算方法和MOS驱动基础

4场效应管知识详解-细说场效应管类型和其他知识(图文)

5MOS管源极及漏极是否可以互换使用分析

6MOS管日常科普知识-10分钟详细图解MOS管的结构原理介绍

7电源设计知识详解-电源设计中的去耦电容应用实例

8mos管炸机-MOS管炸不炸机 原因的关键看这里

9详解MOS管阈值电压和沟长和沟宽的关系及影响阈值电压的因素

10器件发热导致的MOS管损坏之谜及MOS管发热如何解决

全国服务热线13534146615

地 址/Address

工厂地址:深圳市光明新区公明屋园路138号城德轩工业园E栋
深圳办事处地址:深圳市福田区宝华大厦A1428
中山办事处地址:中山市古镇长安灯饰配件城C栋11卡
杭州办事处:杭州市西湖区文三西路118号杭州电子商务大厦6层B座
电话:13534146615 企业QQ:2881579534

扫一扫!

深圳市壹芯微科技有限公司 版权所有 | 备案号:粤ICP备15080555号