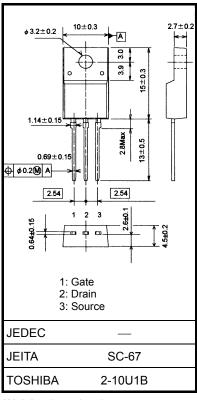
# TK8A60DA




### **Switching Regulator Applications**

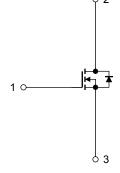
Unit: mm

- Low drain-source ON resistance: RDS (ON) =  $0.8 \Omega$  (typ.)
- High forward transfer admittance:  $|Y_{fs}| = 4.0 \text{ S (typ.)}$
- Low leakage current:  $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 600 \text{ V)}$
- Enhancement-mode:  $V_{th} = 2.0 \text{ to } 4.0 \text{ V (VDS} = 10 \text{ V, ID} = 1 \text{ mA)}$

### **Absolute Maximum Ratings (Ta = 25°C)**

| Characteristics                        |                | Symbol           | Rating     | Unit |
|----------------------------------------|----------------|------------------|------------|------|
| Drain-source voltage                   |                | $V_{DSS}$        | 600        | V    |
| Gate-source voltage                    |                | $V_{GSS}$        | ±30        | V    |
| Drain current                          | DC (Note 1)    | I <sub>D</sub>   | 7.5        | Α    |
|                                        | Pulse (Note 1) | I <sub>DP</sub>  | 30         |      |
| Drain power dissipation (Tc = 25°C)    |                | $P_{D}$          | 45         | W    |
| Single pulse avalanche energy (Note 2) |                | E <sub>AS</sub>  | 270        | mJ   |
| Avalanche current                      |                | I <sub>AR</sub>  | 7.5        | Α    |
| Repetitive avalanche energy (Note 3)   |                | E <sub>AR</sub>  | 4.5        | mJ   |
| Channel temperature                    |                | T <sub>ch</sub>  | 150        | °C   |
| Storage temperature range              |                | T <sub>stg</sub> | -55 to 150 | °C   |




Weight: 1.7 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

#### **Thermal Characteristics**

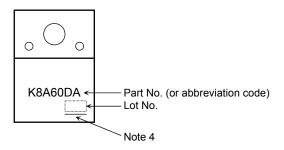
| Characteristics                        | Symbol                 | Max  | Unit |
|----------------------------------------|------------------------|------|------|
| Thermal resistance, channel to case    | R <sub>th (ch-c)</sub> | 2.78 | °C/W |
| Thermal resistance, channel to ambient | R <sub>th (ch-a)</sub> | 62.5 | °C/W |

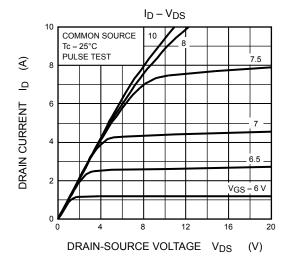
Internal Connection

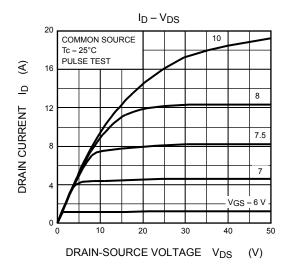


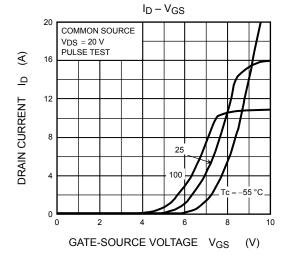
- Note 1: Please use devices on conditions that the channel temperature is below 150°C.
- Note 2:  $V_{DD}$  = 90 V,  $T_{ch}$  = 25°C (initial), L = 8.4 mH,  $R_G$  = 25  $\Omega$ ,  $I_{AR}$  = 7.5 A
- Note 3: Repetitive rating: pulse width limited by maximum channel temperature

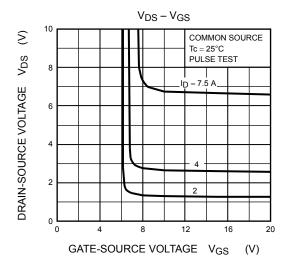
This transistor is an electrostatic sensitive device. Please handle with caution.


## **Electrical Characteristics (Ta = 25°C)**


| Char                         | acteristics    | Symbol               | Test Condition                                                             | Min | Тур. | Max | Unit |
|------------------------------|----------------|----------------------|----------------------------------------------------------------------------|-----|------|-----|------|
| Gate leakage cui             | rent           | I <sub>GSS</sub>     | $V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$                          | _   | _    | ±1  | μΑ   |
| Drain cut-off curr           | ent            | I <sub>DSS</sub>     | V <sub>DS</sub> = 600 V, V <sub>GS</sub> = 0 V                             | _   | _    | 10  | μА   |
| Drain-source bre             | akdown voltage | V (BR) DSS           | $I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$                                | 600 | _    | _   | V    |
| Gate threshold ve            | oltage         | V <sub>th</sub>      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 mA                              | 2.0 | _    | 4.0 | V    |
| Drain-source ON              | resistance     | R <sub>DS</sub> (ON) | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 4 A                               | _   | 0.8  | 1.0 | Ω    |
| Forward transfer             | admittance     | Y <sub>fs</sub>      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 4 A                               | 1.0 | 4.0  | _   | S    |
| Input capacitance            |                | C <sub>iss</sub>     |                                                                            | _   | 1050 | _   |      |
| Reverse transfer capacitance |                | C <sub>rss</sub>     | $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$           | _   | 5    | _   | pF   |
| Output capacitance           |                | Coss                 |                                                                            | _   | 100  | _   |      |
| Switching time               | Rise time      | t <sub>r</sub>       | $V_{GS}$ $V_{DD} \approx 200 \text{ V}$                                    |     | 25   |     | . ns |
|                              | Turn-on time   | t <sub>on</sub>      |                                                                            |     | 60   |     |      |
|                              | Fall time      | t <sub>f</sub>       |                                                                            |     | 10   |     |      |
|                              | Turn-off time  | t <sub>off</sub>     | Duty $\leq$ 1%, $t_W = 10 \mu s$                                           | _   | 75   | _   |      |
| Total gate charge            |                | Qg                   |                                                                            | _   | 20   |     |      |
| Gate-source charge           |                | Q <sub>gs</sub>      | $V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 7.5 \text{ A}$ | _   | 13   | _   | nC   |
| Gate-drain charge            |                | Q <sub>gd</sub>      |                                                                            | _   | 7    | _   |      |


# Source-Drain Ratings and Characteristics (Ta = 25°C)


| Characteristics                          | Symbol             | Test Condition                                  | Min | Тур. | Max  | Unit |
|------------------------------------------|--------------------|-------------------------------------------------|-----|------|------|------|
| Continuous drain reverse current (Note 1 | I <sub>DR</sub>    | _                                               | _   | _    | 7.5  | Α    |
| Pulse drain reverse current (Note 1      | ) I <sub>DRP</sub> | _                                               | _   | _    | 30   | Α    |
| Forward voltage (diode)                  | V <sub>DSF</sub>   | I <sub>DR</sub> = 7.5 A, V <sub>GS</sub> = 0 V  | _   | _    | -1.7 | V    |
| Reverse recovery time                    | t <sub>rr</sub>    | I <sub>DR</sub> = 7.5 A, V <sub>GS</sub> = 0 V, | _   | 1300 | _    | ns   |
| Reverse recovery charge                  | Q <sub>rr</sub>    | dl <sub>DR</sub> /dt = 100 A/μs                 | _   | 12   | _    | μС   |


## Marking

