TK5A50D

Switching Regulator Applications

Unit: mm

• Low drain-source ON-resistance: $R_{DS (ON)} = 1.3 \Omega (typ.)$

High forward transfer admittance: |Y_{fs}| = 3.0 S (typ.)

• Low leakage current: $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 500 \text{ V)}$

• Enhancement mode: V_{th} = 2.4 to 4.4 V (V_{DS} = 10 V, I_D = 1 mA)

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	500	V	
Gate-source voltage		V _{GSS}	±30	V	
Drain current	DC (Note 1)	I _D	5		
	Pulse (t = 1 ms) (Note 1)	I _{DP}	20	Α	
Drain power dissipati	on (Tc = 25°C)	PD	35	W	
Single pulse avalanche energy (Note 2)		E _{AS}	150	mJ	
Avalanche current		I _{AR}	5	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	3.5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55 to 150	°C	

Weight: 1.7 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.57	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 10.2 mH, R_G = 25 Ω , I_{AR} = 5 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device. Handle with care.

Internal Connection

Electrical Characteristics (Ta = 25°C)

Char	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±1	μΑ
Drain cut-off curr	ent	I _{DSS}	V _{DS} = 500 V, V _{GS} = 0 V	_	_	10	μΑ
Drain-source bre	Drain-source breakdown voltage		I _D = 10 mA, V _{GS} = 0 V	500	_	_	٧
Gate threshold ve	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.4	_	4.4	V
Drain-source ON	-resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 2.5 A	_	1.3	1.5	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 2.5 A	0.8	3.0	_	S
Input capacitance		C _{iss}		_	490	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	_	3	_	pF
Output capacitance		C _{oss}		_	55	_	
Switching time	Rise time	t _r	$\begin{array}{c c} 10 \text{ V} & \text{I}_D = 2.5 \text{ A} & \text{V}_{OUT} \\ \hline \text{VGS} & \text{VOUT} \\ \hline \text{50 } \Omega & \text{RL} = \\ \hline \text{80 } \Omega \\ \hline \text{VDD} \approx 200 \text{ V} \\ \\ \end{array}$ Duty \leq 1%, $t_W =$ 10 μs		18	_	
	Turn-on time	t _{on}			40	_	ns
	Fall time	t _f			8		
	Turn-off time	t _{off}		_	55	_	
Total gate charge		Qg		_	11	_	
Gate-source charge		Q _{gs}	$V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 5 \text{ A}$	_	6	_	nC
Gate-drain charge		Q _{gd}			5		

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I_{DR}	_	_	_	5	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	20	Α
Forward voltage (diode)	V_{DSF}	I _{DR} = 5 A, V _{GS} = 0 V	_	_	-1.7	٧
Reverse recovery time	t _{rr}	$I_{DR} = 5 \text{ A}, V_{GS} = 0 \text{ V},$	_	1000		ns
Reverse recovery charge	Qrr	dl _{DR} /dt = 100 A/μs		5.0	_	μС

Marking

