TK40A10J1 ### **Switching Regulator Applications** Unit: mm • Small gate charge: Q_g = 76nC (typ.) Low drain-source ON-resistance: R_{DS} (ON) = 11.5 mΩ (typ.) High forward transfer admittance: |Yfs| = 90 S Low leakage current: I_{DSS} = 10 μA (max) (V_{DS} = 100 V) • Enhancement mode: V_{th} = 1.1 to 2.3 V (V_{DS} = 10 V, I_D = 1 mA) ### Absolute Maximum Ratings (Ta = 25°C) | Characte | eristics | Symbol | Rating | Unit | | |-----------------------|--------------------------|------------------|------------|------|--| | Drain-source voltage | , | V _{DSS} | 100 | V | | | Drain-gate voltage (F | R _{GS} = 20 kΩ) | V_{DGR} | 100 | V | | | Gate-source voltage | | V _{GSS} | ±20 | V | | | Drain current | DC (Note 1) | I _D | 40 | А | | | | Pulse (Note 1) | I _{DP} | 160 | A | | | Drain power dissipat | ion (Tc = 25°C) | PD | 40 | W | | | Single pulse avalance | he energy
(Note 2) | E _{AS} | 202 | mJ | | | Avalanche current | | I _{AR} | 40 | Α | | | Repetitive avalanche | energy (Note 3) | E _{AR} | 2.4 | mJ | | | Channel temperature |) | T _{ch} | 150 | °C | | | Storage temperature | range | T _{stg} | -55 to 150 | °C | | Weight: 1.7 g (typ.) Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). #### **Thermal Characteristics** | Characteristics | Symbol | Max | Unit | |--|------------------------|-------|------| | Thermal resistance, channel to case | R _{th (ch-c)} | 3.125 | °C/W | | Thermal resistance, channel to ambient | R _{th (ch-a)} | 62.5 | °C/W | Note 1: Ensure that the channel and lead temperatures do not exceed 150°C. Note 2: $~V_{DD}=25~V,~T_{Ch}=25^{\circ}C,~L=200~\mu H,~I_{AR}=40~A$, $R_{G}=1\Omega$ Note 3: Repetitive rating: pulse width limited by maximum channel temperature This transistor is an electrostatic- sensitive device. Handle with care. # Electrical Characteristics (Ta = 25°C) | Chara | cteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |---|-----------------------|----------------------|---|-----|------|-----|------| | Gate leakage cur | rent | I _{GSS} | $V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$ | _ | _ | ±10 | μА | | Drain cut-OFF cu | Drain cut-OFF current | | V _{DS} = 100 V, V _{GS} = 0 V | _ | _ | 10 | μА | | Drain-source breakdown voltage | | V (BR) DSS | $I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$ | 100 | _ | _ | V | | | | V (BR) DSX | $I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$ | 60 | _ | _ | | | Gate threshold voltage | | V _{th} | V _{DS} = 10 V, I _D = 1 mA | 1.1 | _ | 2.3 | V | | Drain-source ON resistance | | R _{DS} (ON) | V _{GS} = 4.5 V, I _D = 20A | _ | 13 | 17 | - mΩ | | | | | V _{GS} = 10 V, I _D = 20A | _ | 11.5 | 15 | | | Forward transfer | admittance | Y _{fs} | V _{DS} = 10 V, I _D = 20 A | 45 | 90 | _ | S | | Input capacitance | | C _{iss} | | _ | 4300 | _ | pF | | Reverse transfer capacitance | | C _{rss} | $V_{DS} = 10V, V_{GS} = 0 V, f = 1 MHz$ | _ | 230 | _ | | | Output capacitance | | Coss | | _ | 790 | _ | | | Switching time | Rise time | t _r | V_{GS} 0 V V_{GS} $V_{DD} \simeq 50$ V $V_{DD} \simeq 50$ V | _ | 14 | _ | ns | | | Turn-ON time | t _{on} | | _ | 22 | _ | | | | Fall time | t _f | | _ | 24 | _ | | | | Turn-OFF time | t _{off} | | _ | 115 | _ | | | Total gate charge (gate-source plus gate-drain) | | Qg | $V_{DD} \simeq 80 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 40 \text{A}$ | _ | 44 | _ | | | | | | $V_{DD} \simeq 80 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 40 \text{A}$ | _ | 76 | _ | nC | | Gate-source charge 1 | | Q _{gs1} | $V_{DD} \simeq 80 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 40 \text{A}$ | | 11 | | | | Gate-drain ("miller") charge | | Q _{gd} | | _ | 21 | _ | | | Gate switch charge | | Q _{SW} | | | 24 | | | ### Source-Drain Ratings and Characteristics (Ta = 25°C) | Characteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |---|------------------|--|-----|------|------|------| | Continuous drain reverse current (Note 1) | I_{DR} | _ | _ | _ | 40 | Α | | Pulse drain reverse current (Note 1) | I _{DRP} | _ | _ | _ | 160 | Α | | Forward voltage (diode) | V_{DSF} | I _{DR} = 40 A, V _{GS} = 0 V | _ | -0.9 | -1.2 | V | | Reverse recovery time | t _{rr} | I _{DR} = 40 A, V _{GS} = 0 V, | _ | 55 | _ | ns | | Reverse recovery charge | Q _{rr} | dl _{DR} /dt = 50 A/μs | _ | 63 | _ | nC | # Marking