

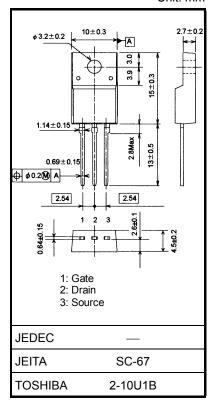
TK40A10J1

Switching Regulator Applications

Unit: mm

• Small gate charge: Q_g = 76nC (typ.)

Low drain-source ON-resistance: R_{DS} (ON) = 11.5 mΩ (typ.)


High forward transfer admittance: |Yfs| = 90 S

Low leakage current: I_{DSS} = 10 μA (max) (V_{DS} = 100 V)

• Enhancement mode: V_{th} = 1.1 to 2.3 V (V_{DS} = 10 V, I_D = 1 mA)

Absolute Maximum Ratings (Ta = 25°C)

Characte	eristics	Symbol	Rating	Unit	
Drain-source voltage	,	V _{DSS}	100	V	
Drain-gate voltage (F	R _{GS} = 20 kΩ)	V_{DGR}	100	V	
Gate-source voltage		V _{GSS}	±20	V	
Drain current	DC (Note 1)	I _D	40	А	
	Pulse (Note 1)	I _{DP}	160	A	
Drain power dissipat	ion (Tc = 25°C)	PD	40	W	
Single pulse avalance	he energy (Note 2)	E _{AS}	202	mJ	
Avalanche current		I _{AR}	40	Α	
Repetitive avalanche	energy (Note 3)	E _{AR}	2.4	mJ	
Channel temperature)	T _{ch}	150	°C	
Storage temperature	range	T _{stg}	-55 to 150	°C	

Weight: 1.7 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

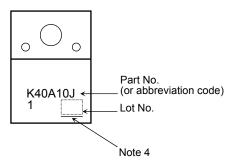
Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.125	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel and lead temperatures do not exceed 150°C.

Note 2: $~V_{DD}=25~V,~T_{Ch}=25^{\circ}C,~L=200~\mu H,~I_{AR}=40~A$, $R_{G}=1\Omega$

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic- sensitive device. Handle with care.


Electrical Characteristics (Ta = 25°C)

Chara	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μА
Drain cut-OFF cu	Drain cut-OFF current		V _{DS} = 100 V, V _{GS} = 0 V	_	_	10	μА
Drain-source breakdown voltage		V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	100	_	_	V
		V (BR) DSX	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	60	_	_	
Gate threshold voltage		V _{th}	V _{DS} = 10 V, I _D = 1 mA	1.1	_	2.3	V
Drain-source ON resistance		R _{DS} (ON)	V _{GS} = 4.5 V, I _D = 20A	_	13	17	- mΩ
			V _{GS} = 10 V, I _D = 20A	_	11.5	15	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 20 A	45	90	_	S
Input capacitance		C _{iss}		_	4300	_	pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = 10V, V_{GS} = 0 V, f = 1 MHz$	_	230	_	
Output capacitance		Coss		_	790	_	
Switching time	Rise time	t _r	V_{GS} 0 V V_{GS} $V_{DD} \simeq 50$ V $V_{DD} \simeq 50$ V	_	14	_	ns
	Turn-ON time	t _{on}		_	22	_	
	Fall time	t _f		_	24	_	
	Turn-OFF time	t _{off}		_	115	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq 80 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 40 \text{A}$	_	44	_	
			$V_{DD} \simeq 80 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 40 \text{A}$	_	76	_	nC
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 80 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 40 \text{A}$		11		
Gate-drain ("miller") charge		Q _{gd}		_	21	_	
Gate switch charge		Q _{SW}			24		

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I_{DR}	_	_	_	40	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	160	Α
Forward voltage (diode)	V_{DSF}	I _{DR} = 40 A, V _{GS} = 0 V	_	-0.9	-1.2	V
Reverse recovery time	t _{rr}	I _{DR} = 40 A, V _{GS} = 0 V,	_	55	_	ns
Reverse recovery charge	Q _{rr}	dl _{DR} /dt = 50 A/μs	_	63	_	nC

Marking

