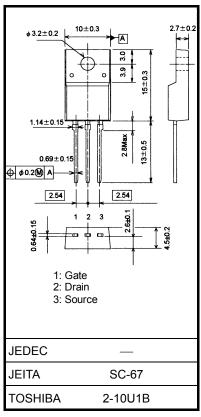
TK3A60DA


Switching Regulator Applications

Unit: mm

- Low drain-source ON-resistance: RDS (ON) = $2.2 \Omega(\text{typ.})$
- High forward transfer admittance: $|Y_{fs}| = 1.5 \text{ S (typ.)}$
- Low leakage current: $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 600 \text{ V)}$
- Enhancement mode: $V_{th} = 2.4 \text{ to } 4.4 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA)}$

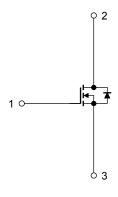
Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	600	V	
Gate-source voltage		V_{GSS}	±30	V	
Drain current	DC (Note 1)	I _D	2.5	Α	
	Pulse (Note 1)	I _{DP}	10	A	
Drain power dissipation (Tc = 25°C)		PD	30	W	
Single pulse avalanche energy (Note 2)		E _{AS}	180	mJ	
Avalanche current		I _{AR}	2.5	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	3.0	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55 to 150	°C	

Weight: 1.7 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

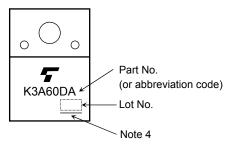
Thermal Characteristics

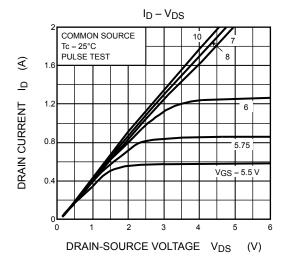

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	4.17	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

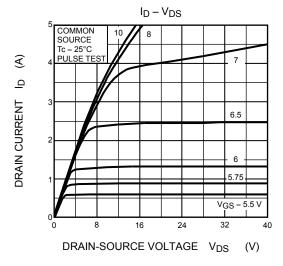
Note 2: $V_{DD} = 90 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 50 mH, $R_G = 25 \Omega$, $I_{AR} = 2.5 \text{ A}$

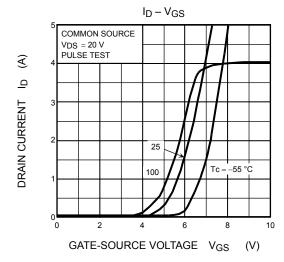
Note 3: Repetitive rating: pulse width limited by maximum channel temperature

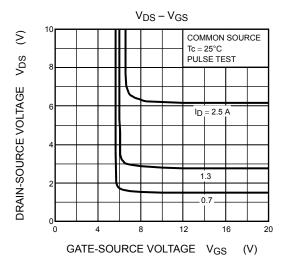
This transistor is an electrostatic-sensitive device. Handle with care.


Electrical Characteristics (Ta = 25°C)


Char	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cui	rent	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±1	μΑ
Drain cut-off curr	ent	I _{DSS}	V _{DS} = 600V, V _{GS} = 0 V	_	_	10	μА
Drain-source breakdown voltage		V (BR) DSS	$I_D = 10$ mA, $V_{GS} = 0$ V	600	_	_	V
Gate threshold ve	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.4	_	4.4	V
Drain-source ON	resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D =1.3 A	_	2.2	2.8	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D =1.3 A	0.4	1.5	_	S
Input capacitance		C _{iss}		_	380	_	pF
Reverse transfer capacitance		C _{rss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	_	2.5	_	
Output capacitance		Coss		_	45	_	
Switching time	Rise time	t _r	V_{GS} $V_{DD} \approx 200 \text{ V}$	_	15	_	
	Turn-on time	t _{on}			35	_	20
	Fall time	t _f			7	_	ns
	Turn-off time	t _{off}	Duty \leq 1%, $t_W = 10 \mu s$	_	55	_	
Total gate charge		Qg		_	9	_	
Gate-source charge		Q _{gs}	$V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$	_	5	_	nC
Gate-drain charge		Q _{gd}		_	4	_	


Source-Drain Ratings and Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	2.5	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	10	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 2.5 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	$I_{DR} = 2.5 \text{ A}, V_{GS} = 0 \text{ V},$	_	700	_	ns
Reverse recovery charge	Q _{rr}	dI _{DR} /dt = 100 A/μs	_	3.5	_	μС


Marking

