

TK30A06J3A

Switching Regulator Applications

Unit: mm

• Low drain-source ON-resistance: $R_{DS (ON)} = 19 \text{ m}\Omega \text{ (typ.)}$

● High forward transfer admittance: |Y_{fs}| = 34 S (typ.)

• Low leakage current: $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 60 \text{ V)}$

• Enhancement mode: $V_{th} = 1.3$ to 2.5 V ($V_{DS} = 10$ V, $I_D = 1$ mA)

Absolute Maximum Ratings (Ta = 25°C)

Characteri	stics	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	60	V	
Drain-gate voltage (R _{GS} = 20 k Ω)		V_{DGR}	60	V	
Gate-source voltage		V_{GSS}	±20	V	
Drain current	DC (Note 1)	I _D	30	Α	
	Pulse (Note 1)	I_{DP}	90	Α	
Drain power dissipatio	n (Tc = 25°C)	P_{D}	25	W	
Single pulse avalanche energy (Note 2)		E _{AS}	40	mJ	
Avalanche current		I _{AR}	30	Α	
Repetitive avalanche	energy (Note 3)	E _{AR}	2.5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55 to 150	°C	

Weight : 1.7 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	5.0	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 25 V, T_{ch} = 25°C (initial), L = 60 μ H, R_{G} = 25 Ω , I_{AR} = 30 A

Note 3: Repetitive rating: Pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device. Handle with care.

Electrical Characteristics (Ta = 25°C)

Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	ırrent	I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	_	±10	μА
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V	1	_	10	μΑ
Drain-source breakdown voltage		V _{(BR) DSS}	I _D = 10 mA, V _{GS} = 0 V	60	_	1	V
		V _{(BR) DSX}	I _D = 10 mA, V _{GS} = -20 V 35		_	_	V
Gate threshold v	oltage	V_{th}	V _{DS} = 10 V, I _D = 1 mA	1.3	_	2.5	V
Drain-source ON-resistance		D	V _{GS} = 4.5 V, I _D = 15 A	_	24	35	0
		R _{DS} (ON)	V _{GS} = 10V, I _D = 15A	_	19	26	- mΩ
Forward transfe	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 15 A	17	34	_	S
Input capacitance C _{iss}			_	1950	_		
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	140	_	pF
Output capacitance		Coss		_	230	_	
Switching time	Rise time	t _r	$I_D = 15 \text{ A}$ V_{OUT}		4		
	Turn-on time	t _{on}	0 V 2.0 Ω 4.7 Ω 2.0 Ω		16	1	ne
	Fall time	t _f		1	8	1	ns
	Turn-off time	t _{off}	$V_{DD} \approx 30 \text{ V}$ Duty ≤ 1%, $t_W = 10 \text{ μs}$	_	48	_	
Total gate charge (Gate-source plus gate-drain)		Qg		_	36	_	
Gate source charge		Q_{gs}	$V_{DD} \approx 48 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		26	_	nC
Gate-drain ("miller") charge		Q_{gd}			10	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	30	Α
Pulse drain reverse current (Note 1)	I _{DRP}	-	_	_	90	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 30 A, V _{GS} = 0 V	_	_	-1.5	V
Reverse recovery time	t _{rr}	I _{DR} = 30 A, V _{GS} = 0 V		40		ns
Reverse recovered charge	Q _{rr}	dI _{DR} / dt = 50 A / μs	_	32	_	nC

Marking

