MOSFETs Silicon N-channel MOS (U-MOSVII-H)

TK100A10N1

1. Applications

· Switching Voltage Regulators

2. Features

- (1) Low drain-source on-resistance: $R_{DS(ON)} = 3.1 \text{ m}\Omega$ (typ.) ($V_{GS} = 10 \text{ V}$)
- (2) Low leakage current: $I_{DSS} = 10 \mu A \text{ (max) (V}_{DS} = 100 \text{ V)}$
- (3) Enhancement mode: V_{th} = 2.0 to 4.0 V (V_{DS} = 10 V, I_{D} = 1.0 mA)

3. Packaging and Internal Circuit

4. Absolute Maximum Ratings (Note) (Ta = 25°C unless otherwise specified)

Characterist	Symbol	Rating	Unit		
Drain-source voltage			V_{DSS}	100	V
Gate-source voltage			V_{GSS}	±20	
Drain current (DC)	(Silicon limit)	(Note 1,2)	I _D	207	Α
Drain current (DC)	(T _c = 25°C)	(Note 1)	I _D	100	
Drain current (pulsed)	(t = 1 ms)	(Note 1)	I _{DP}	362	
Power dissipation	(T _c = 25°C)		P _D	45	W
Single-pulse avalanche energy		(Note 3)	E _{AS}	222	mJ
Avalanche current			I _{AR}	100	Α
Channel temperature			T _{ch}	150	°C
Storage temperature			T _{stg}	-55 to 150	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

6. Electrical Characteristics

6.1. Static Characteristics (T_a = 25°C unless otherwise specified)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		_	±0.1	μΑ
Drain cut-off current	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V	-	-	10	
Drain-source breakdown voltage	V _{(BR)DSS}	I _D = 10 mA, V _{GS} = 0 V	100	_	_	V
Drain-source breakdown voltage (Note 4)	V _{(BR)DSX}	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	65			
Gate threshold voltage	V_{th}	V _{DS} = 10 V, I _D = 1.0 mA	2.0	-	4.0	
Drain-source on-resistance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 50 A	_	3.1	3.8	mΩ

Note 4: If a reverse bias is applied between gate and source, this device enters $V_{(BR)DSX}$ mode. Note that the drain-source breakdown voltage is lowered in this mode.

6.2. Dynamic Characteristics (T_a = 25°C unless otherwise specified)

Characteristics	Symbol	Test Condition		Тур.	Max	Unit
Input capacitance	C _{iss}	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	_	8800		pF
Reverse transfer capacitance	C _{rss}		_	63	_	
Output capacitance	C _{oss}			1500		
Gate resistance	r _g	_	_	2.6		Ω
Switching time (rise time)	t _r	See Figure 6.2.1	_	32	_	ns
Switching time (turn-on time)	t _{on}		_	59	_	
Switching time (fall time)	t _f		_	45		
Switching time (turn-off time)	t _{off}		-	140		

Fig. 6.2.1 Switching Time Test Circuit

6.3. Gate Charge Characteristics (T_a = 25°C unless otherwise specified)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Total gate charge (gate-source plus gate-drain)	Q_{g}	$V_{DD} \approx 80 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 100 \text{ A}$	-	140	1	nC
Gate-source charge 1	Q _{gs1}		_	46	_	
Gate-drain charge	Q_{gd}		_	34	_	
Gate switch charge	Q_{SW}		_	55	_	

6.4. Source-Drain Characteristics (T_a = 25°C unless otherwise specified)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Reverse drain current (DC)	(Note 5)	I _{DR}	_	_	_	100	Α
Reverse drain current (pulsed)	(Note 5)	I _{DRP}	_	_	_	362	
Diode forward voltage		V _{DSF}	I _{DR} = 100 A, V _{GS} = 0 V	_	_	-1.2	V
Reverse recovery time	(Note 6)	t _{rr}	I _{DR} = 100 A, V _{GS} = 0 V	_	93	_	ns
Reverse recovery charge	(Note 6)	Q _{rr}	-dl _{DR} /dt = 100 A/μs	_	220	_	nC

Note 5: Ensure that the channel temperature does not exceed 150°C.

Note 6: Ensure that V_{DS} peak does not exceed V_{DSS}.

7. Marking (Note)

Fig. 7.1 Marking

Note: A line under a Lot No. identifies the indication of product Labels.

Not underlined: [[Pb]]/INCLUDES > MCV

Underlined: [[G]]/RoHS COMPATIBLE or [[G]]/RoHS [[Pb]]

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.

The RoHS is the Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.