STW30NM60D # N-CHANNEL 600V - 0.125Ω - 30A TO-247 Fast Diode MDmesh™ MOSFET **Table 1: General Features** | TYPE | V _{DSS} | R _{DS(on)} | I _D | | |------------|------------------|---------------------|----------------|--| | STW30NM60D | 600 V | < 0.145 Ω | 30 A | | - TYPICAL $R_{DS}(on) = 0.125 \Omega$ - HIGH dv/dt AND AVALANCHE CAPABILITIES - 100% AVALANCHE RATED - LOW INPUT CAPACITANCE AND GATE CHARGE - LOW GATE INPUT RESISTANCE - FAST INTERNAL RECOVERY DIODE #### **DESCRIPTION** The FDmesh™ associates all advantages of reduced on-resistance and fast switching with an intrinsic fast-recovery body diode. It is therefore strongly recommended for bridge topologies, in particular ZVS phase-shift converters. #### **APPLICATIONS** ZVS PHASE-SHIFT FULL BRIDGE CONVERTERS FOR SMPS AND WELDING EQUIPMENT Figure 1: Package Figure 2: Internal Schematic Diagram **Table 2: Order Codes** | SALES TYPE | MARKING | PACKAGE | PACKAGING | |------------|----------|---------|-----------| | STW30NM60D | W30NM60D | TO-247 | TUBE | **Table 3: Absolute Maximum ratings** | Symbol | Parameter | Value | Unit | |------------------------------------|---|--------------------------|----------| | V _{DS} | Drain-source Voltage (V _{GS} = 0) | 600 | V | | V _{DGR} | Drain-gate Voltage (R _{GS} = 20 k Ω) | 600 | V | | V _{GS} | Gate- source Voltage | ± 30 | V | | I _D | Drain Current (continuous) at T _C = 25°C | 30 | А | | ID | Drain Current (continuous) at T _C = 100°C | 18.9 | А | | I _{DM} (•) | Drain Current (pulsed) | 120 | А | | P _{TOT} | Total Dissipation at T _C = 25°C | 312 | W | | | Derating Factor | 2.5 | W/°C | | dv/dt (1) | Peak Diode Recovery voltage slope | 20 | V/ns | | T _j
T _{stg} | Operating Junction Temperature
Storage Temperature | -55 to 150
-55 to 150 | °C
°C | #### **Table 4: Thermal Data** | Rthj-case | Thermal Resistance Junction-case Max | 0.4 | °C/W | |----------------|--|------|------| | Rthj-amb | Thermal Resistance Junction-ambient Max | 62.5 | °C/W | | T _I | Maximum Lead Temperature For Soldering Purpose | 300 | °C | ### **Table 5: Avalanche Characteristics** | Symbol | Parameter | Max Value | Unit | |-----------------|--|-----------|------| | I _{AR} | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max) | 15 | Α | | E _{AS} | Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V) | 740 | mJ | ### **ELECTRICAL CHARACTERISTICS** (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 6: On /Off | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------|--|---|------|-------|-----------|----------| | V _{(BR)DSS} | Drain-source Breakdown
Voltage | $I_D = 1 \text{ mA}, V_{GS} = 0$ | 600 | | | V | | I _{DSS} | Zero Gate Voltage
Drain Current (V _{GS} = 0) | V_{DS} = Max Rating
V_{DS} = Max Rating, T_{C} = 125°C | | | 10
100 | μΑ
μΑ | | I _{GSS} | Gate-body Leakage
Current (V _{DS} = 0) | V _{GS} = ± 20 V | | | ± 10 | μΑ | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 3 | 4 | 5 | V | | R _{DS(on} | Static Drain-source On Resistance | V _{GS} = 10 V, I _D = 15 A | | 0.125 | 0.145 | Ω | ^(•) Pulse width limited by safe operating area (1) $I_{SD} \le 30A$, di/dt $\le 400A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$. **Table 7: Dynamic** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|----------------------|------|----------------------| | g _{fs} (1) | Forward Transconductance | V _{DS} = 15 V , I _D = 15 A | | 16 | | S | | C _{iss}
C _{oss}
C _{rss} | Input Capacitance Output Capacitance Reverse Transfer Capacitance | V _{DS} = 25 V, f = 1 MHz,
V _{GS} = 0 | | 2520
800
75 | | pF
pF
pF | | Coss eq (3). | Equivalent Output
Capacitance | V _{GS} = 0 V, V _{DS} = 0 to 480 V | | 390 | | pF | | t _{d(on)} t _r t _{d(off)} t _f | Turn-on Delay Time
Rise Time
Turn-off-Delay Time
Fall Time | $V_{DD} = 300 \text{ V}, I_{D} = 15 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 15) | | 32
33
75
35 | | ns
ns
ns
ns | | Q _g
Q _{gs}
Q _{gd} | Total Gate Charge
Gate-Source Charge
Gate-Drain Charge | V _{DD} = 480 V, I _D = 30 A,
V _{GS} = 10 V
(see Figure 18) | | 82
24
42 | 115 | nC
nC
nC | ### **Table 8: Source Drain Diode** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|--|--|------|------------------|-----------|---------------| | I _{SD}
I _{SDM} (2) | Source-drain Current
Source-drain Current (pulsed) | | | | 30
120 | A
A | | V _{SD} (1) | Forward On Voltage | I _{SD} = 30 A, V _{GS} = 0 | | | 1.5 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | I _{SD} = 30 A, di/dt = 100 A/μs
V _{DD} = 50V
(see Figure 16) | | 165
1.1
14 | | ns
nC
A | | t _{rr}
Q _{rr}
IRRM | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | $I_{SD} = 30 \text{ A, di/dt} = 100 \text{ A/µs}$
$V_{DD} = 50\text{V, T}_{j} = 150^{\circ}\text{C}$
(see Figure 16) | | 312
3.3
21 | | ns
nC
A | ⁽¹⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. (2) Pulse width limited by safe operating area. (3) C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}. Figure 3: Safe Operating Area **Figure 4: Output Characteristics** Figure 5: Transconductance Figure 6: Thermal Impedance Figure 7: Transfer Characteristics Figure 8: Static Drain-source On Resistance