STW14NM50 # N-CHANNEL 550V @ Tjmax - 0.32Ω - 14A TO-247 MDmesh™ MOSFET **Table 1: General Features** | TYPE | V _{DSS}
(@Tjmax) | R _{DS(on)} | I _D | |-----------|------------------------------|---------------------|----------------| | STW14NM50 | 550 V | < 0.35 Ω | 14 A | - TYPICAL $R_{DS}(on) = 0.32 \Omega$ - HIGH dv/dt AND AVALANCHE CAPABILITIES - 100% AVALANCHE RATED - LOW INPUT CAPACITANCE AND GATE CHARGE - LOW GATE INPUT RESISTANCE - TIGHT PROCESS CONTROL AND HIGH MANUFACTORING YIELDS #### **DESCRIPTION** The MDmesh™ is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprierati strip technique yields overall dynamic performance that is significantly better than that of similar completition's products. #### **APPLICATIONS** The MDmesh[™] family is very suitablr for increase the power density of high voltage converters allowing system miniaturization and higher efficiencies. Figure 1: Package Figure 2: Internal Schematic Diagram **Table 2: Order Codes** | SALES TYPE | SALES TYPE MARKING | | PACKAGING | | |------------|--------------------|--------|-----------|--| | STW14NM50 | W14NM50 | TO-247 | TUBE | | **Table 3: Absolute Maximum ratings** | Symbol | Parameter | Value | Unit | |--------------------------------|--|------------|------| | V _{GS} | Gate- source Voltage | ±30 | V | | I _D | Drain Current (continuous) at T _C = 25°C | 14 | А | | I _D | Drain Current (continuous) at T _C = 100°C | 8.8 | Α | | I _{DM} ⁽¹⁾ | Drain Current (pulsed) | 56 | А | | P _{TOT} | Total Dissipation at T _C = 25°C | 175 | W | | | Derating Factor | 1.28 | W/°C | | dv/dt | Peak Diode Recovery voltage slope | 6 | V/ns | | T _{stg} | Storage Temperature | -65 to 150 | °C | | Tj | Max. Operating Junction Temperature | 150 | °C | ^(•)Pulse width limited by safe operating area ### **Table 4: Thermal Data** | Rthj-case | Thermal Resistance Junction-case Max | 0.715 | °C/W | |----------------|--|-------|------| | Rthj-amb | Thermal Resistance Junction-ambient Max | 30 | °C/W | | T _I | Maximum Lead Temperature For Soldering Purpose | 300 | °C | ### **Table 5: Avalanche Characteristics** | Symbol | Parameter | Max Value | | |-----------------|--|-----------|----| | I _{AR} | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max) | 12 | А | | E _{AS} | Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V) | 400 | mJ | # **ELECTRICAL CHARACTERISTICS** (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) ### Table 6: On /Off | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------|--|---|------|------|---------|----------| | V _{(BR)DSS} | Drain-source Breakdown
Voltage | $I_D = 250 \mu A, V_{GS} = 0$ | 500 | | | V | | I _{DSS} | Zero Gate Voltage
Drain Current (V _{GS} = 0) | V_{DS} = Max Rating
V_{DS} = Max Rating, T_{C} = 125°C | | | 1
10 | μA
μA | | I _{GSS} | Gate-body Leakage
Current (V _{DS} = 0) | V _{GS} = ± 30 V | | | ± 100 | nA | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 3 | 4 | 5 | V | | R _{DS(on} | Static Drain-source On Resistance | V _{GS} = 10 V, I _D = 6 A | | 0.32 | 0.35 | Ω | ^(*)Limited only by maximum temperature allowed $⁽¹⁾I_{SD} \leq 14A, \ di/dt \leq 100A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_j \leq T_{JMAX}.$ ### **ELECTRICAL CHARACTERISTICS (CONTINUED)** ### **Table 7: Dynamic** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|---------------------|------|----------------------| | g _{fs} (1) | Forward Transconductance | $V_{DS} > I_{D(on)} \times R_{DS(on)max},$
$I_{D} = 6A$ | | 5.2 | | S | | C _{iss}
C _{oss}
C _{rss} | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,} $
$V_{GS} = 0$ | | 1000
180
25 | | pF
pF
pF | | Coss eq (3). | Equivalent Output
Capacitance | V _{GS} = 0 V, V _{DS} = 0 to 400 V | | 90 | | pF | | R _G | Gate Input Resistance | f=1 MHz Gate DC Bias = 0
Test Signal Level = 20mV
Open Drain | | 1.6 | | Ω | | $\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$ | Turn-on Delay Time
Rise Time
Turn-off-Delay Time
Fall Time | $V_{DD} = 250 \text{ V, } I_{D} = 6 \text{ A,}$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 15) | | 20
10
19
8 | | ns
ns
ns
ns | | Q _g
Q _{gs}
Q _{gd} | Total Gate Charge
Gate-Source Charge
Gate-Drain Charge | $V_{DD} = 400 \text{ V, } I_{D} = 12 \text{ A,}$ $V_{GS} = 10 \text{ V}$ (see Figure 18) | | 28
8
15 | 38 | nC
nC
nC | ### **Table 8: Source Drain Diode** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|--|--|------|---------------------|----------|---------------| | I _{SD}
I _{SDM} (2) | Source-drain Current
Source-drain Current (pulsed) | | | | 14
56 | A
A | | V _{SD} (1) | Forward On Voltage | I _{SD} = 12 A, V _{GS} = 0 | | | 1.5 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | $I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$
$V_{DD} = 100 \text{V}$
(see Figure 16) | | 270
2.23
16.5 | | ns
µC
A | | t _{rr}
Q _{rr}
I _{RRM} | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | $I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/µs}$
$V_{DD} = 100 \text{ V, T}_j = 150 ^{\circ}\text{C}$
(see Figure 16) | | 340
3
18 | | ns
µC
A | ⁽¹⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. (2) Pulse width limited by safe operating area. (3) C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.