

100 V, 30 A power Schottky rectifier

Features

- · High current capability
- Avalanche rated
- · Low forward voltage drop
- High frequency operation
- ECOPACK[®]2 compliant components (for D²PAK on demand)

Applications

- Switching diode
- SMPS
- DC/DC converter
- LED lighting
- Desktop power supply

Description

This single Schottky rectifier is suited for high frequency switch mode power supply.

Packaged in TO-220AB, D²PAK and I²PAK, the STPS30SM100S is optimized for use in notebook and game station adapters, providing in these applications a good efficiency at both low and high load.

Product status link
STPS30SM100S

Product summary				
I _{F(AV)}	30 A			
V _{RRM}	100 V			
T _j (max.)	150 °C			
V _F (typ.)	0.63 V			

1 Characteristics

Table 1. Absolute ratings (limiting values, with terminals 1 and 3 short circuited, at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	100	V	
I _{F(RMS)}	Forward rms current	60	Α	
I _{F(AV)}	Average forward current δ = 0.5, square wave	T _c = 125 °C	30	Α
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sinusoidal	400	Α
P _{ARM}	Repetitive peak avalanche power	t _p = 10 μs, T _j = 125 °C	1545	W
T _{stg}	Storage temperature range	-65 to +175	°C	
T _j	Maximum operating junction temperature (1)	150	°C	

^{1.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameter

Symbol	Parameter	Max. value	Unit
R _{th(j-c)}	Junction to case	1	°C/W

For more information, please refer to the following application note:

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics (with terminals 1 and 3 short circuited)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
ı (1)	Davaras lagicada current	T _j = 25 °C	V _R = V _{RRM}	-		45	μA
I _R ⁽¹⁾	Reverse leakage current	T _j = 125 °C		-	15	45	mA
		T _j = 25 °C	L - 5 A	-	500		
	Forward voltage drop	I _F = 5 A	-	420			
V (2)		T _j = 25 °C	I _F = 10 A	-	600	670	\(
V _F ⁽²⁾		T _j = 125 °C		-	505	560	mV
		T _j = 25 °C	I _F = 30 A	-	780	870	
		T _j = 125 °C		-	630	690	

^{1.} Pulse test: $t_p = 5$ ms, $\delta < 2\%$

To evaluate the conduction losses, use the following equation:

$$P = 0.580 \text{ x } I_{F(AV)} + 0.0033 \text{ x } I_{F}^{2} (RMS)$$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

^{2.} Pulse test: t_p = 380 μ s, δ < 2%

1.1 Characteristics (curves)

Figure 1. Average forward power dissipation versus average forward current (terminals 1 and 3 short circuited)

Figure 2. Average forward current versus ambient temperature (δ = 0.5, terminals 1 and 3 short circuited)

Figure 3. Normalized avalanche power derating versus pulse duration (T_i = 125 °C)

Figure 4. Relative variation of thermal impedance junction to case versus pulse duration

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS30SM100ST	PS30SM100ST	TO-220AB	1.95 g	50	Tube
STPS30SM100SR	PS30SM100SR	I²PAK	1.50 g	50	Tube
STPS30SM100SG-TR	PS30SM100SG	D²PAK	1.48 g	1000	Tape and reel