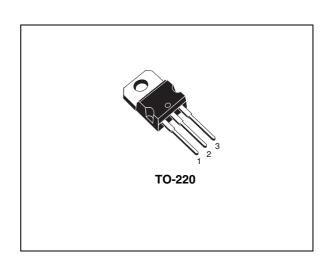


STP60NS04ZB

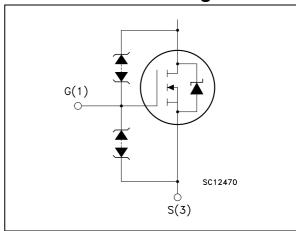
N-channel clamped - 10mΩ - 60A - TO-220 Fully protected Mesh Overlay™ Power MOSFET

General features

Туре	V _{DSS} R _{DS(on)}		I _D
STP60NS04ZB	Clamped	< 0.015Ω	60A


- 100% avalanche tested
- Low capacitance and gate charge
- 175 °C maximum junction temperature

Description


This fully clamped Power MOSFET is produced by using the latest advanced Company's Mesh Overlay process which is based on a novel strip layout. The inherent benefits of the new technology coupled with the extra clamping capabilities make this product particularly suitable for the harshest operation conditions such as those encountered in the automotive environment. Any other application requiring extra ruggedness is also recommended.

Applications

■ Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STP60NS04ZB	P60NS04ZB	TO-220	Tube

STP60NS04ZB Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	Clamped	V
V _{GS}	Gate- source voltage	Clamped	V
I _D	Drain current (continuous) at T _C = 25°C	60	А
I _D	Drain current (continuous) at T _C = 100°C	42	А
I _{DG}	Drain gate current (continuous)	±50	mA
I _{GS}	Gate source current (continuous)	±50	mA
I _{DM} ⁽¹⁾	Drain current (pulsed)	240	А
P _{tot}	Total dissipation at T _C = 25°C	150	W
	Derating factor	1	W/°C
V _{ESD(G-S)}	Gate-source ESD (HBM - C = 100pF, R=1.5 kΩ)	6	KV
V _{ESD(G-D)}	Gate-drain ESD (HBM - C = 100pF, R=1.5 kΩ)	4	KV
V _{ESD(D-S)}	Drain-source ESD (HBM - C = 100pF, R=1.5 kΩ)	4	KV
T _{stg}	Storage temperature	-65 to 175	°C
T _j	Max. operating junction temperature	-00 10 175	

^{1.} Pulse width limited by safe operating area.

Table 2. Thermal data

Rthj-case	Thermal resistance junction-case max	1	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W
TJ	Maximum lead temperature for soldering purpose	300	°C

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	60	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 30$ V)	400	mJ

Electrical characteristics STP60NS04ZB

2 Electrical characteristics

(T_{CASE} =25°C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1mA, V _{GS} =0 -40 < T _j < 175°C	33			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 16V; T _J =150°C V _{DS} = 16V; T _J =175°C			50 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 10V; T_j = 175^{\circ}C$ $V_{GS} = \pm 16V; T_j = 175^{\circ}C$			50 150	μ Α μ Α
V _{GSS}	Gate-source breakdown voltage	I _{GS} = 100μA	18			V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 1 \text{mA}$ -40 < T _J < 150°C	1.7	3	4.2	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 30A$ $V_{GS} = 16V, I_D = 30A$		11 10	15 14	mΩ mΩ

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15V, I _D =30A	20	40		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25V, f = 1MHz,$ $V_{GS} = 0$		1700 800 190	2100 1000 240	pF pF pF
t _{r(Voff)} t _f t _c	Turn-on delay time Fall time Cross-over time	$V_{clamp} = 30V, I_D = 60A$ $R_G = 4.7\Omega V_{GS} = 10V$		60 45 100	75 60 130	ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 18V, I_D = 60A,$ $V_{GS} = 10V, R_G = 4.7\Omega$		48 13 16	42	nC nC nC

^{1.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

Table 5. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				60 240	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 60A, V _{GS} = 0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 60A$, di/dt = 100A/ μ s, $V_{DD} = 15V$, $T_j = 150$ °C		50 62 2.6		ns nC A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Electrical characteristics STP60NS04ZB

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

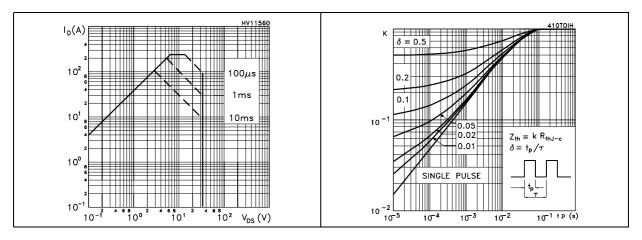


Figure 3. Output characterisics

Figure 4. Transfer characteristics

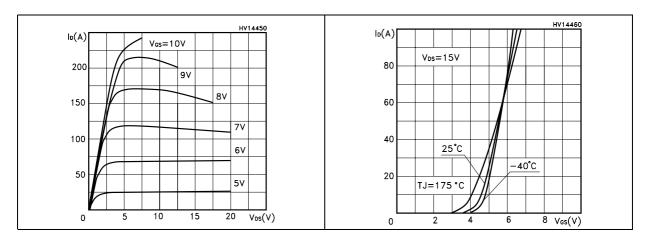
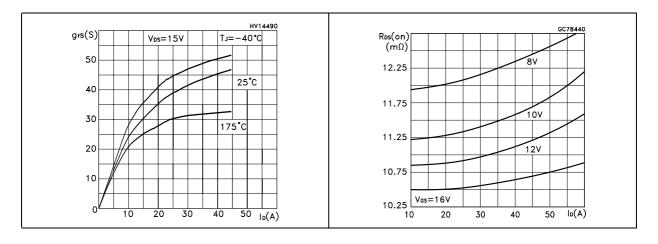



Figure 5. Transconductance

Figure 6. Static drain-source on resistance

