

STP21NM50N-STF21NM50N-STW21NM50N STB21NM50N - STB21NM50N-1

N-CHANNEL 500V - 0.15Ω - 18A TO-220/FP/D²/I²PAK/TO-247 SECOND GENERATION MDmesh™ MOSFET

Table 1: General Features

TYPE	V _{DSS} (@Tjmax)	R _{DS(on)}	I _D
STB21NM50N	550 V	< 0.19 Ω	18 A
STB21NM50N-1	550 V	< 0.19 Ω	18 A
STF21NM50N	550 V	< 0.19 Ω	18 A (*)
STP21NM50N	550 V	< 0.19 Ω	18 A
STW21NM50N	550 V	< 0.19 Ω	18 A

- 100% AVALANCHE TESTED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE

DESCRIPTION

The **STx21NM50N** is realized with the second generation of MDmesh Technology. This revolutionary MOSFET associates a new vertical structure to the Company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters

APPLICATIONS

The MDmesh™ II family is very suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies.

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STB21NM50N	B21NM50N	D ² PAK	TAPE & REEL
STB21NM50N-1	B21NM50N	I ² PAK	TUBE
STF21NM50N	F21NM50N	TO-220FP	TUBE
STP21NM50N	P21NM50N	TO-220	TUBE
STW21NM50N	W21NM50N	TO-247	TUBE

STP21NM50N - STF21NM50N - STB21NM50N - STB21NM50N-1 - STW21NM50N

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit	
		TO-220 / D ² PAK / I ² PAK / TO-247	TO-220FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500		V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	500		V
V _{GS}	Gate- source Voltage	±25		V
I _D	Drain Current (continuous) at T _C = 25°C	18	18 (*)	А
I _D	Drain Current (continuous) at T _C = 100°C	11	11 (*)	А
I _{DM} (•)	Drain Current (pulsed)	72 72 (*)		А
P _{TOT}	Total Dissipation at T _C = 25°C	140 30		W
	Derating Factor	1.12 0.23		W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	15		V/ns
Viso	Insulation Winthstand Voltage (DC)	2500		V
T _{stg}	Storage Temperature	-55 to 150 150		°C
Tj	Max. Operating Junction Temperature			

Table 4: Thermal Data

		TO-220 / D ² PAK / I ² PAK / TO-220FP		
Rthj-case	Thermal Resistance Junction-case Max	0.89	4.21	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5		°C/W
Tı	Maximum Lead Temperature For Soldering Purpose	300		°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
las	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	9	Α
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	480	mJ

^(•) Pulse width limited by safe operating area (*) Limited only by maximum temperature allowed

⁽¹⁾ $I_{SD} \le 18 \text{ A}$, $di/dt \le 400 \text{ A/}\mu\text{s}$, $V_{DD} = 80\% \text{ V}_{(BR)DSS}$

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: On/Off

Symbol	Parameter	Test Conditions		Value		Unit
			Min.	Тур.	Max.	
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0$	500			V
dv/dt(2)	Drain Source Voltage Slope	Vdd=400V, Id=25A, Vgs=10V		44		V/ns
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_{C} = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 9 A		0.150	0.190	Ω

⁽²⁾ Characteristic value at turn off on inductive load

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V _, I _D = 9 A		12		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		1950 420 60		pF pF pF
Coss eq. (*)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$		270		pF
$\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$	Turn-on Delay Time Rise Time Off-voltageRise Time Fall Time	V_{DD} =250 V, I_{D} = 9 A R_{G} = 4.7 Ω V _{GS} = 10 V (see Figure 18)		22 18 90 30		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400V$, $I_{D} = 18$ A, $V_{GS} = 10V$, (see Figure 21)		65 10 30		nC nC nC
R _g	Gate Input Resistance	f=1MHz Gate DC Bias=0 Test Signal Level=20mV Open Drain		1.6		Ω

^(*) Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				18 72	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 18 A, V _{GS} = 0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 18 \text{ A, di/dt} = 100 \text{ A/µs}$ $V_{DD} = 100 \text{ V, T}_j = 25^{\circ}\text{C}$ (see Figure 19)		360 5 27		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 18A$, di/dt = 100 A/ μ s $V_{DD} = 100$ V, $T_j = 150$ °C (see Figure 19)		640 6.5 27		ns µC A

Note: 1. Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %.

Figure 3: Safe Operating Area For TO-220

Figure 4: Safe Operating Area For TO-220FP

Figure 5: Output Characteristics

Figure 6: Thermal Impedance For TO-220

Figure 7: Thermal Impedance For TO-220FP

Figure 8: Transfer Characteristics

