STP21NM50N-STF21NM50N-STW21NM50N STB21NM50N - STB21NM50N-1 # N-CHANNEL 500V - 0.15Ω - 18A TO-220/FP/D²/I²PAK/TO-247 SECOND GENERATION MDmesh™ MOSFET **Table 1: General Features** | TYPE | V _{DSS}
(@Tjmax) | R _{DS(on)} | I _D | |--------------|------------------------------|---------------------|----------------| | STB21NM50N | 550 V | < 0.19 Ω | 18 A | | STB21NM50N-1 | 550 V | < 0.19 Ω | 18 A | | STF21NM50N | 550 V | < 0.19 Ω | 18 A (*) | | STP21NM50N | 550 V | < 0.19 Ω | 18 A | | STW21NM50N | 550 V | < 0.19 Ω | 18 A | - 100% AVALANCHE TESTED - LOW INPUT CAPACITANCE AND GATE CHARGE - LOW GATE INPUT RESISTANCE #### **DESCRIPTION** The **STx21NM50N** is realized with the second generation of MDmesh Technology. This revolutionary MOSFET associates a new vertical structure to the Company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters #### **APPLICATIONS** The MDmesh™ II family is very suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies. Figure 1: Package Figure 2: Internal Schematic Diagram **Table 2: Order Codes** | SALES TYPE | MARKING | PACKAGE | PACKAGING | |--------------|----------|--------------------|-------------| | STB21NM50N | B21NM50N | D ² PAK | TAPE & REEL | | STB21NM50N-1 | B21NM50N | I ² PAK | TUBE | | STF21NM50N | F21NM50N | TO-220FP | TUBE | | STP21NM50N | P21NM50N | TO-220 | TUBE | | STW21NM50N | W21NM50N | TO-247 | TUBE | ### STP21NM50N - STF21NM50N - STB21NM50N - STB21NM50N-1 - STW21NM50N **Table 3: Absolute Maximum ratings** | Symbol | Parameter | Value | Unit | | |---------------------|--|--|----------|------| | | | TO-220 / D ² PAK / I ² PAK
/ TO-247 | TO-220FP | | | V _{DS} | Drain-source Voltage (V _{GS} = 0) | 500 | | V | | V _{DGR} | Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$) | 500 | | V | | V _{GS} | Gate- source Voltage | ±25 | | V | | I _D | Drain Current (continuous) at T _C = 25°C | 18 | 18 (*) | А | | I _D | Drain Current (continuous) at T _C = 100°C | 11 | 11 (*) | А | | I _{DM} (•) | Drain Current (pulsed) | 72 72 (*) | | А | | P _{TOT} | Total Dissipation at T _C = 25°C | 140 30 | | W | | | Derating Factor | 1.12 0.23 | | W/°C | | dv/dt(1) | Peak Diode Recovery voltage slope | 15 | | V/ns | | Viso | Insulation Winthstand Voltage (DC) | 2500 | | V | | T _{stg} | Storage Temperature | -55 to 150
150 | | °C | | Tj | Max. Operating Junction Temperature | | | | **Table 4: Thermal Data** | | | TO-220 / D ² PAK / I ² PAK / TO-220FP | | | |-----------|--|---|------|------| | Rthj-case | Thermal Resistance Junction-case Max | 0.89 | 4.21 | °C/W | | Rthj-amb | Thermal Resistance Junction-ambient Max | 62.5 | | °C/W | | Tı | Maximum Lead Temperature For Soldering Purpose | 300 | | °C | **Table 5: Avalanche Characteristics** | Symbol | Parameter | Max Value | Unit | |-----------------|--|-----------|------| | las | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max) | 9 | Α | | E _{AS} | Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V) | 480 | mJ | ^(•) Pulse width limited by safe operating area (*) Limited only by maximum temperature allowed ⁽¹⁾ $I_{SD} \le 18 \text{ A}$, $di/dt \le 400 \text{ A/}\mu\text{s}$, $V_{DD} = 80\% \text{ V}_{(BR)DSS}$ ## **ELECTRICAL CHARACTERISTICS** (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 6: On/Off | Symbol | Parameter | Test Conditions | | Value | | Unit | |----------------------|--|--|------|-------|---------|----------| | | | | Min. | Тур. | Max. | | | V _{(BR)DSS} | Drain-source
Breakdown Voltage | $I_D = 1 \text{mA}, V_{GS} = 0$ | 500 | | | V | | dv/dt(2) | Drain Source Voltage
Slope | Vdd=400V, Id=25A, Vgs=10V | | 44 | | V/ns | | I _{DSS} | Zero Gate Voltage
Drain Current (V _{GS} = 0) | V_{DS} = Max Rating
V_{DS} = Max Rating
T_{C} = 125 °C | | | 1
10 | μA
μA | | I _{GSS} | Gate-body Leakage
Current (V _{DS} = 0) | V _{GS} = ± 20V | | | 100 | nA | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ | 2 | 3 | 4 | V | | R _{DS(on)} | Static Drain-source On Resistance | V _{GS} = 10V, I _D = 9 A | | 0.150 | 0.190 | Ω | ⁽²⁾ Characteristic value at turn off on inductive load Table 7: Dynamic | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|--|--|------|----------------------|------|----------------------| | g _{fs} (1) | Forward Transconductance | V _{DS} = 15 V _, I _D = 9 A | | 12 | | S | | C _{iss}
C _{oss}
C _{rss} | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$ | | 1950
420
60 | | pF
pF
pF | | Coss eq. (*) | Equivalent Output
Capacitance | $V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$ | | 270 | | pF | | $\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$ | Turn-on Delay Time
Rise Time
Off-voltageRise Time
Fall Time | V_{DD} =250 V, I_{D} = 9 A
R_{G} = 4.7 Ω V _{GS} = 10 V
(see Figure 18) | | 22
18
90
30 | | ns
ns
ns
ns | | Q _g
Q _{gs}
Q _{gd} | Total Gate Charge
Gate-Source Charge
Gate-Drain Charge | $V_{DD} = 400V$, $I_{D} = 18$ A, $V_{GS} = 10V$, (see Figure 21) | | 65
10
30 | | nC
nC
nC | | R _g | Gate Input Resistance | f=1MHz Gate DC Bias=0
Test Signal Level=20mV
Open Drain | | 1.6 | | Ω | ^(*) Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS **Table 8: Source Drain Diode** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|--|--|------|------------------|----------|---------------| | I _{SD}
I _{SDM} | Source-drain Current
Source-drain Current (pulsed) | | | | 18
72 | A
A | | V _{SD} (1) | Forward On Voltage | I _{SD} = 18 A, V _{GS} = 0 | | | 1.5 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | $I_{SD} = 18 \text{ A, di/dt} = 100 \text{ A/µs}$
$V_{DD} = 100 \text{ V, T}_j = 25^{\circ}\text{C}$
(see Figure 19) | | 360
5
27 | | ns
µC
A | | t _{rr}
Q _{rr}
I _{RRM} | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | $I_{SD} = 18A$, di/dt = 100 A/ μ s
$V_{DD} = 100$ V, $T_j = 150$ °C
(see Figure 19) | | 640
6.5
27 | | ns
µC
A | Note: 1. Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %. Figure 3: Safe Operating Area For TO-220 Figure 4: Safe Operating Area For TO-220FP Figure 5: Output Characteristics Figure 6: Thermal Impedance For TO-220 Figure 7: Thermal Impedance For TO-220FP Figure 8: Transfer Characteristics