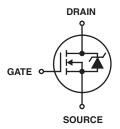


45A, 60V, 0.028 Ohm, N-Channel Power MOSFETs

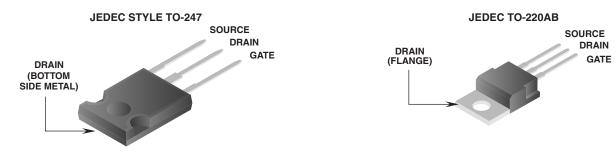
These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA49028.

Ordering Information


PART NUMBER	PACKAGE	BRAND		
RFG45N06	TO-247	RFG45N06		
RFP45N06	TO-220AB	RFP45N06		
RF1S45N06SM	TO-263AB	F1S45N06		

NOTE: When ordering, use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, i.e. RF1S45N06SM9A.


Features

- 45A, 60V
- $r_{DS(ON)} = 0.028\Omega$
- Temperature Compensating PSPICE® Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- 175°C Operating Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-263AB

RFG45N06, RFP45N06, RF1S45N06SM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFG45N06, RFP45N06				
	RF1S45N06SM	UNITS			
Drain to Source Voltage (Note 1)	60	V			
Drain to Gate Voltage ($R_G = 20K\Omega$) (Note 1)	60	V			
Continuous Drain Current	45	Α			
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve				
Gate to Source Voltage	±20	V			
Pulsed Avalanche RatingE _{AS}	Refer to UIS Curve				
Power Dissipation	131	W			
Linear Derating Factor	0.877	W/oC			
Operating and Storage Temperature	-55 to 175	oC			
Maximum Temperature for Soldering					
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	°C			
Package Body for 10s, See Techbrief 334	260	°C			

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V (Figure 11)		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250μA (Figure 10)		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = Rated BV _{DSS} , V_{GS} = 0V V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V (125°C)		-	-	1	μА
				-	-	25	μА
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
Drain Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 45A, V _{GS} = 10V (Figure 9)		-	-	0.028	Ω
Turn-On Time	t _{ON}	$V_{DD} = 30V, I_{D} = 45A$ $R_{L} = 0.667\Omega, V_{GS} = +10V$ $R_{G} = 3.6\Omega$ (Figure 13)		-	-	120	ns
Turn-On Delay Time	t _{d(ON)}			-	12	-	ns
Rise Time	t _r			-	74	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	37	-	ns
Fall Time	t _f			-	16	-	ns
Turn-Off Time	tOFF			-	-	80	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0 to 20V	$V_{DD} = 48V, I_D = 45A,$ $R_L = 1.07\Omega$ $I_{g(REF)} = 1.5mA$ (Figure 13)	-	125	150	nC
Gate Charge at 10V	Q _{g(10)}	V _{GS} = 0 to 10V		-	67	80	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0 to 2V		-	3.7	4.5	nC
Input Capacitance	C _{ISS}	$V_{DS} = 25V$, $V_{GS} = 0V$ f = 1MHz (Figure 12)		-	2050	-	pF
Output Capacitance	Coss			-	600	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	200	-	pF
Thermal Resistance Junction to Case	$R_{\theta JC}$			-	-	1.14	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			-	-	80	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 45A	-	-	1.5	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 45A$, $dI_{SD}/dt = 100A/\mu s$	-	-	125	ns

NOTES:

- 2. Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3) and Peak Current Capability Curve (Figure 5).

Typical Performance Curves Unless Otherwise Specified

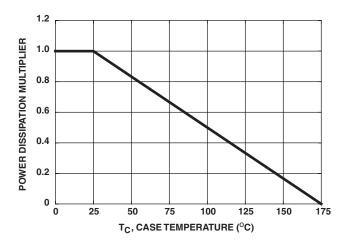


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

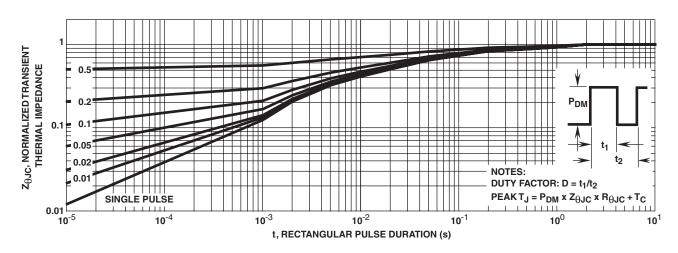


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

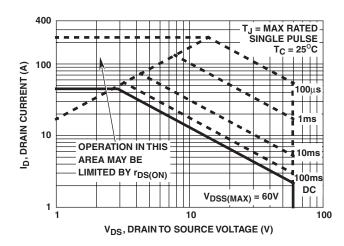


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

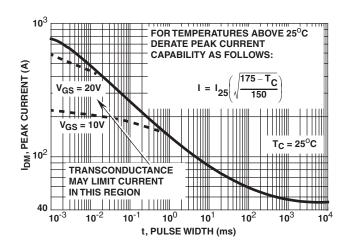


FIGURE 5. PEAK CURRENT CAPABILITY