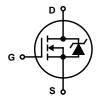


40A, 100V, 0.040 Ohm, N-Channel Power MOSFETs

These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers and emitter switches for bipolar transistors. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA9846

Ordering Information

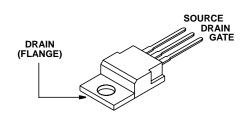

PART NUMBER	PACKAGE	BRAND
RFG40N10	TO-247	RFG40N10
RFP40N10	TO-220AB	RFP40N10
RF1S40N10SM	TO-263AB	F1S40N10

NOTE: When ordering, use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, i.e. RF1S40N10SM9A.

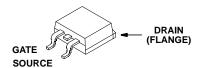
Features


- 40A, 100V
- $r_{DS(ON)} = 0.040\Omega$
- UIS Rating Curve
- SOA is Power Dissipation Limited
- 175°C Operating Temperature
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol



Packaging


JEDEC STYLE TO-247

JEDEC TO-220AB

JEDEC TO-263AB

RFG40N10, RFP40N10, RF1S40N10SM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFG40N10, RFP40N10, RF1S40N10SM	UNITS
	KF 1340N 103W	UNITS
Drain to Source Breakdown Voltage (Note 1)	100	V
Drain to Gate Voltage ($R_{GS} = 1M\Omega$) (Note 1)	100	V
Gate to Source Voltage	±20	V
Drain Current		
Continuous (Figure 2)I _D	40	Α
Pulsed Drain Current (Note 2)	100	Α
Pulsed Avalanche RatingE _{AS}	Figures 4, 12, 13	
Power Dissipation	160	W
Derate Above 25°C	1.07	W/oC
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from case for 10s	300	oC
Package Body for 10s, see Techbrief 334	260	°С

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.
- 2. Repetitive Rating: pulse width limited by maximum junction temperature.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250\mu A, V_{GS} = 0V \text{ (Figure 9)}$		100	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu$ A (Figure 8)		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80V, V _{GS} = 0V	T _C = 25°C	-	-	1	μΑ
			$T_{C} = 150^{\circ}C$	-	-	50	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 40A, V _{GS} = 10V (Figure 7)		-	-	0.040	Ω
Turn-On Time	t _{ON}	$V_{DD} = 50V, I_{D} = 20A,$ $R_{L} = 2.5\Omega, V_{GS} = 10V, R_{GS} = 4.2 \Omega$ (Figure 11)		-	-	80	ns
Turn-On Delay Time	t _d (ON)			-	17	-	ns
Rise Time	t _r			-	30	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	42	-	ns
Fall Time	t _f		-	20	-	ns	
Turn-Off Time	tOFF		-	-	100	ns	
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 20V	$V_{DD} = 80V,$ $I_{D} = 40A,$ $R_{L} = 2.0\Omega$ (Figures 11)	-	-	300	nC
Gate Charge at 10V	Q _{g(10)}	V _{GS} = 0V to 10V		-	-	150	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0V to 2V		-	-	7.5	nC
Thermal Resistance Junction to Case	$R_{\theta JC}$		•	-	-	0.94	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-247		-	-	30	°C/W
		TO-220AB and TO	9-263AB	-	-	62	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V_{SD}	I _{SD} = 40A	-	-	1.5	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	-	200	ns

Typical Performance Curves Unless Otherwise Specified

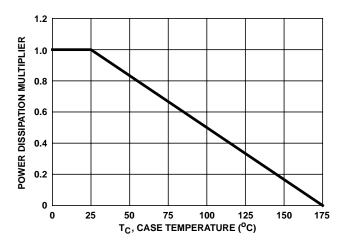


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

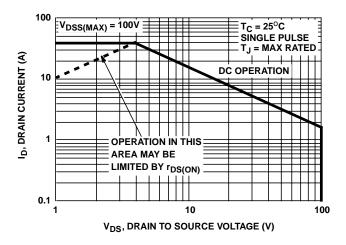


FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

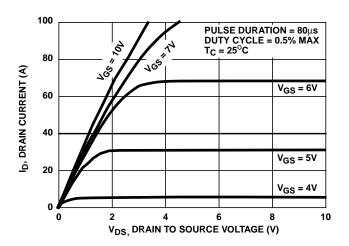


FIGURE 5. SATURATION CHARACTERISTICS

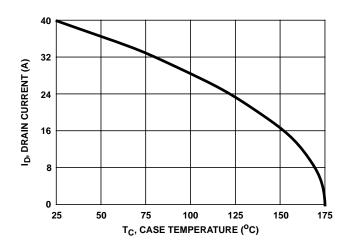
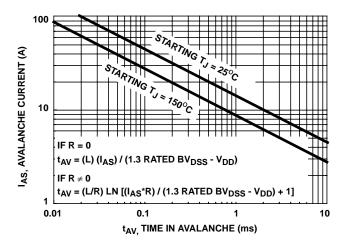



FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

NOTE: Refer to Intersil application notes AN9321 and AN9322.

FIGURE 4. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

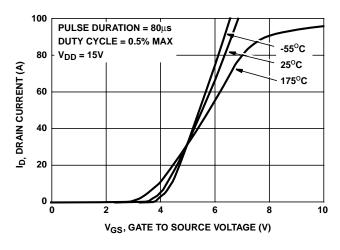


FIGURE 6. TRANSFER CHARACTERISTICS