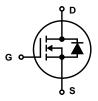


10A, 150V, 0.300 Ohm, N-Channel Power MOSFETs

These are N-channel enhancement-mode silicon-gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

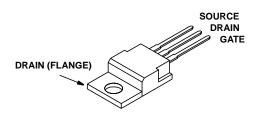
Formerly developmental type TA09192.

Ordering Information


PART NUMBER	PACKAGE	BRAND
RFP10N15	TO-220AB	RFP10N15

NOTE: When ordering, include the entire part number.

Features


- 10A, 150V
- $r_{DS(ON)} = 0.300\Omega$
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

TO-220AB

RFP10N15

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFP10N15	UNITS
Drain to Source Voltage (Note 1)V _{DS}	150	V
Drain to Gate Voltage (R _{GS} = 20k Ω) (Note 1)	150	V
Continuous Drain Current	10	Α
Pulsed Drain Current (Note 3)	25	Α
Gate to Source Voltage	±20	V
Maximum Power Dissipation	60	W
Linear Derating Factor	0.48	W/oC
Operating and Storage Temperature	-55 to 150	oC
Maximum Temperature for Soldering		0 -
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See TB334T _{pkg}	260	-0

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0	150	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu A$, (Figure 8)	2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	1	μΑ
		$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, TC = 125^{\circ}C$	-	-	25	mA
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0$	-	-	±100	nA
Drain to Source On Resistance(Note 2)	r _{DS(ON)}	I _D = 10A, V _{GS} = 10V, (Figures 6, 7)	-	-	0.300	Ω
Drain to Source On Voltage (Note 2)	V _{DS(ON)}	I _D = 10A, V _{GS} = 10V	-	-	3.0	V
Turn-On Delay Time	t _{d(ON)}	$I_D \approx 5A$, $V_{DD} = 75V$, $R_G = 50\Omega$, $V_{GS} = 10V$, $R_L = 14.7\Omega$ (Figures 10, 11, 12)	-	40	60	ns
Rise Time	t _r		-	165	250	ns
Turn-Off Delay Time	t _{d(OFF)}		-	90	135	ns
Fall Time	t _f		-	90	135	ns
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz, (Figure 9)	-	-	850	pF
Output Capacitance	C _{OSS}		-	-	230	pF
Reverse Transfer Capacitance	C _{RSS}		-	-	100	pF
Thermal Resistance Junction to Case		RFP10N15	-	-	2.083	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 5A	-	-	1.4	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 4A$, $dI_{SD}/dt = 100A/\mu s$	-	200	-	ns

NOTES:

- 2. Pulse Test: Pulse Width $\leq 300 \mu s, \, \text{Duty Cycle} \leq 2\%$
- 3. Repetitive rating: pulse width is limited by maximum junction temperature.

Typical Performance Curves

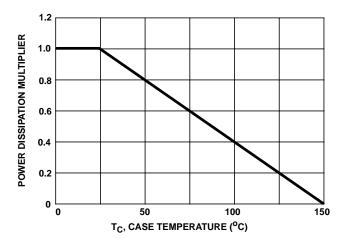


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

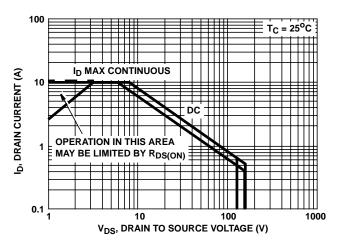


FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

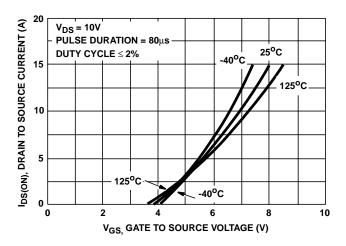


FIGURE 5. TRANSFER CHARACTERISTICS

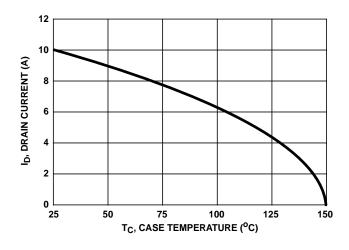


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

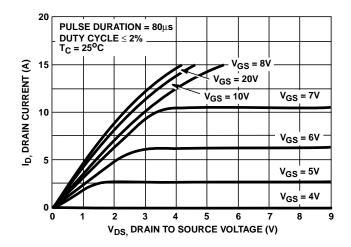


FIGURE 4. SATURATION CHARACTERISTICS

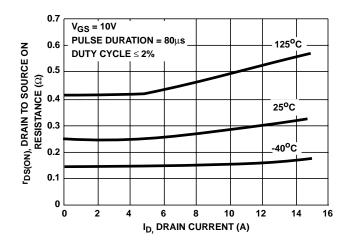


FIGURE 6. DRAIN TO SOURCE ON RESISTANCE VS DRAIN CURRENT