ISL9V5045S3ST EcoSPARK® N-Channel Ignition IGBT 500mJ, 450V ### **Features** - SCIS Energy = 500mJ at T_J = 25°C - Logic Level Gate Drive - Qualified to AEC Q101 - RoHS Compliant ### **Applications** - Automotive Ignition Coil Driver Circuits - Coil On Plug Applications ### **General Description** The ISL9V5045S3ST is next generation ignition IGBT that offer outstanding SCIS capability in the industry standard D2-Pak (TO-263) plastic package. This device is intended for use in automotive ignition circuits, specifically as a coil drivers. Internal diodes provide voltage clamping without the need for external components. **EcoSPARK**® devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information. ### **Package** ### **Symbol** ### **Device Maximum Ratings** $T_A = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Ratings | Units | |----------------------|---|------------|-------| | BV _{CER} | Collector to Emitter Breakdown Voltage (I _C = 1 mA) | 480 | V | | BV _{ECS} | Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA) | 24 | V | | E _{SCIS25} | At Starting $T_J = 25$ °C, $I_{SCIS} = 39.2A$, $L = 650 \mu Hy$ | 500 | mJ | | E _{SCIS150} | At Starting $T_J = 150$ °C, $I_{SCIS} = 31.1$ A, $L = 650 \mu Hy$ | 315 | mJ | | I _{C25} | Collector Current Continuous, At T _C = 25°C, See Fig 9 | 51 | Α | | I _{C110} | Collector Current Continuous, At T _C = 110°C, See Fig 9 | 43 | Α | | V_{GEM} | Gate to Emitter Voltage Continuous | ±10 | V | | P _D | Power Dissipation Total T _C = 25°C | 300 | W | | | Power Dissipation Derating T _C > 25°C | 2 | W/°C | | T _J | Operating Junction Temperature Range | -40 to 175 | °C | | T _{STG} | Storage Junction Temperature Range | -40 to 175 | °C | | T _L | Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s) | 300 | °C | | T _{pkg} | Max Lead Temp for Soldering (Package Body for 10s) | 260 | °C | | ESD | Electrostatic Discharge Voltage at 100pF, 1500Ω | 4 | kV | ## **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|---------------|----------|-----------|------------|----------| | V5045S | ISL9V5045S3ST | TO-263AB | 330mm | 24mm | 800 | # **Electrical Characteristics** $T_A = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | | Min | Тур | Max | Units | |----------------------|---|--|--------------------------------------|-----|------|------|-------| | ff State | Characteristics | | | | | | | | BV _{CER} | Collector to Emitter Breakdown Voltage | $I_C = 2\text{mA}$, $V_{GE} = R_G = 1\text{K}\Omega$, See $T_J = -40$ to 150 | 420 | 450 | 480 | V | | | BV _{CES} | Collector to Emitter Breakdown Voltage | $I_C = 10$ mA, $V_{GE} = 0$,
$R_G = 0$, See Fig. 15
$T_J = -40$ to 150°C | | 445 | 475 | 505 | V | | BV _{ECS} | Emitter to Collector Breakdown Voltage | $I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$
$T_C = 25 ^{\circ}\text{C}$ | | 30 | - | - | V | | BV _{GES} | Gate to Emitter Breakdown Voltage | I _{GES} = ± 2mA | | ±12 | ±14 | - | V | | I _{CER} | Collector to Emitter Leakage Current | $V_{CER} = 320V$, | $T_C = 25^{\circ}C$ | - | - | 25 | μΑ | | | | $R_G = 1K\Omega$, See Fig. 11 | T _C = 150°C | - | - | 1 | mA | | I _{ECS} | Emitter to Collector Leakage Current | V_{EC} = 24V, See | $T_C = 25^{\circ}C$ | - | - | 1 | mA | | | | Fig. 11 | $T_C = 150$ °C | - | - | 40 | mA | | R ₁ | Series Gate Resistance | | • | - | 100 | - | Ω | | R ₂ | Gate to Emitter Resistance | | | 10K | - | 30K | Ω | | n State | Characteristics | | | | | | | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | $I_C = 10A,$
$V_{GE} = 4.0V$ | T _C = 25°C,
See Fig. 4 | - | 1.25 | 1.60 | V | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | $I_C = 15A$,
$V_{CE} = 4.5V$ | T _C = 150°C | - | 1.47 | 1.80 | V | ### **Dynamic Characteristics** | Q _{G(ON)} | Gate Charge | $I_C = 10A$, $V_{CE} = 10A$, $V_{CE} = 10A$ | = 12V,
Fig. 14 | i | 32 | - | nC | |---------------------|-----------------------------------|---|------------------------|------|-----|-----|----| | V _{GE(TH)} | Gate to Emitter Threshold Voltage | $I_C = 1.0 \text{mA},$ | $T_C = 25^{\circ}C$ | 1.3 | - | 2.2 | V | | | | $V_{CE} = V_{GE}$,
See Fig. 10 | T _C = 150°C | 0.75 | - | 1.8 | V | | V _{GEP} | Gate to Emitter Plateau Voltage | $I_{C} = 10A$, | V _{CE} = 12V | - | 3.0 | - | V | ### **Switching Characteristics** | t _{d(ON)R} | Current Turn-On Delay Time-Resistive | $V_{CE} = 14V, R_L = 1\Omega,$ | - | 0.7 | 4 | μs | |----------------------|---------------------------------------|--|---|------|-----|----| | t _{rR} | Current Rise Time-Resistive | V_{GE} = 5V, R_G = 1K Ω
T_J = 25°C, See Fig. 12 | - | 2.1 | 7 | μs | | t _{d(OFF)L} | Current Turn-Off Delay Time-Inductive | $V_{CE} = 300V, L = 2mH,$ | - | 10.8 | 15 | μs | | t _{fL} | Current Fall Time-Inductive | V_{GE} = 5V, R_G = 1K Ω
T_J = 25°C, See Fig. 12 | - | 2.8 | 15 | μs | | SCIS | Self Clamped Inductive Switching | T_J = 25°C, L = 650 μH,
R_G = 1KΩ, V_{GE} = 5V, See
Fig. 1 & 2 | - | - | 500 | mJ | #### **Thermal Characteristics** | $R_{ heta JC}$ | Thermal Resistance Junction-Case | TO-263 | - | - | 0.5 | °C/W | |----------------|----------------------------------|--------|---|---|-----|------| ### **Typical Characteristics** Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp Figure 2. Self Clamped Inductive Switching Current vs Inductance