

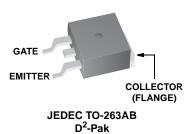
ISL9V5045S3ST EcoSPARK® N-Channel Ignition IGBT

500mJ, 450V

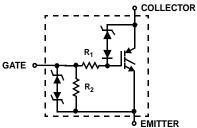
Features

- SCIS Energy = 500mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101
- RoHS Compliant

Applications


- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

General Description


The ISL9V5045S3ST is next generation ignition IGBT that offer outstanding SCIS capability in the industry standard D2-Pak (TO-263) plastic package. This device is intended for use in automotive ignition circuits, specifically as a coil drivers. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK® devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

Package

Symbol

Device Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	480	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 39.2A$, $L = 650 \mu Hy$	500	mJ
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 31.1$ A, $L = 650 \mu Hy$	315	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	51	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	43	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P _D	Power Dissipation Total T _C = 25°C	300	W
	Power Dissipation Derating T _C > 25°C	2	W/°C
T _J	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
T _L	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
V5045S	ISL9V5045S3ST	TO-263AB	330mm	24mm	800

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
ff State	Characteristics						
BV _{CER}	Collector to Emitter Breakdown Voltage	$I_C = 2\text{mA}$, $V_{GE} = R_G = 1\text{K}\Omega$, See $T_J = -40$ to 150	420	450	480	V	
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = -40$ to 150°C		445	475	505	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_C = 25 ^{\circ}\text{C}$		30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ± 2mA		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	$V_{CER} = 320V$,	$T_C = 25^{\circ}C$	-	-	25	μΑ
		$R_G = 1K\Omega$, See Fig. 11	T _C = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V_{EC} = 24V, See	$T_C = 25^{\circ}C$	-	-	1	mA
		Fig. 11	$T_C = 150$ °C	-	-	40	mA
R ₁	Series Gate Resistance		•	-	100	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω
n State	Characteristics						
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 10A,$ $V_{GE} = 4.0V$	T _C = 25°C, See Fig. 4	-	1.25	1.60	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 15A$, $V_{CE} = 4.5V$	T _C = 150°C	-	1.47	1.80	V

Dynamic Characteristics

Q _{G(ON)}	Gate Charge	$I_C = 10A$, $V_{CE} = 10A$, $V_{CE} = 10A$	= 12V, Fig. 14	i	32	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	$I_C = 1.0 \text{mA},$	$T_C = 25^{\circ}C$	1.3	-	2.2	V
		$V_{CE} = V_{GE}$, See Fig. 10	T _C = 150°C	0.75	-	1.8	V
V _{GEP}	Gate to Emitter Plateau Voltage	$I_{C} = 10A$,	V _{CE} = 12V	-	3.0	-	V

Switching Characteristics

t _{d(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14V, R_L = 1\Omega,$	-	0.7	4	μs
t _{rR}	Current Rise Time-Resistive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12	-	2.1	7	μs
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300V, L = 2mH,$	-	10.8	15	μs
t _{fL}	Current Fall Time-Inductive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12	-	2.8	15	μs
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 650 μH, R_G = 1KΩ, V_{GE} = 5V, See Fig. 1 & 2	-	-	500	mJ

Thermal Characteristics

$R_{ heta JC}$	Thermal Resistance Junction-Case	TO-263	-	-	0.5	°C/W

Typical Characteristics

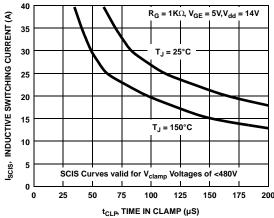


Figure 1. Self Clamped Inductive Switching
Current vs Time in Clamp

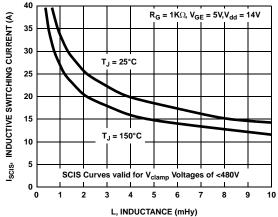


Figure 2. Self Clamped Inductive Switching
Current vs Inductance