

ISL9V5036S3ST / ISL9V5036P3 / ISL9V5036S3

EcoSPARKTM 500mJ, 360V, N-Channel Ignition IGBT

General Description

The ISL9V5036S3ST, ISL9V5036P3, and ISL9V5036S3 are the next generation IGBTs that offer outstanding SCIS capability in the D²-Pak (TO-263) and TO-220 plastic package. These devices are intended for use in automotive ignition circuits, specifically as coil drivers. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK™ devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

Formerly Developmental Type 49443

Applications

- · Automotive Ignition Coil Driver Circuits
- · Coil-On Plug Applications

Features

- Industry Standard D²-Pak package
- SCIS Energy = 500mJ at T_J = 25°C
- Logic Level Gate Drive

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units V	
BV _{CFR}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	390		
BV_{FCS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_{J} = 25^{\circ}C$, $I_{SCIS} = 38.5A$, $L = 670 \mu Hy$	500	mJ	
E _{SCIS150}	At Starting T _{.1} = 150°C, I _{SCIS} = 30A, L = 670 μHy	300	mJ	
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	46	Α	
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	31	Α	
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V	
P _D	Power Dissipation Total T _C = 25°C	250	W	
	Power Dissipation Derating T _C > 25°C	1.67	W/°C	
T_{J}	Operating Junction Temperature Range	-40 to 175	°C	
T_{STG}	Storage Junction Temperature Range	-40 to 175	°C	
T _I	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C	
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C	
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV	

			formation				$\overline{}$	
Device Marking		Device	Package	Reel Size	•	Tape Wid	dth	Quantity
V5036S		ISL9V5036S3ST	TO-263AB	330mm		24mm		800
V5036P		ISL9V5036P3	TO-220AA	Tube		N/A		50
V5036S		ISL9V5036S3	TO-262AA	Tube		N/A		50
Electric	al Chara	ncteristics T _A = 25°C ur	nless otherwise n	oted		1	1	-
Symbol		Parameter		Test Conditions		Тур	Max	Unit
off State	Characte	ristics						
BV _{CER}	Collector to Emitter Breakdown Voltage		$I_C = 2mA$, $V_{GE} = 0$, $R_G = 1K\Omega$, See Fig. 15 $T_J = -40$ to 150°C		330	360	390	V
BV _{CES}	Collector to Emitter Breakdown Voltage		$I_C = 10 \text{mA}, V_{GE} = 0,$ $R_G = 0, \text{ See Fig. 15}$ $T_{,l} = -40 \text{ to } 150 ^{\circ}\text{C}$		360	390	420	V
BV _{ECS}	Emitter to Collector Breakdown Voltage		$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_C = 25 ^{\circ}\text{C}$		30	-	-	V
BV _{GES}	Gate to En	nitter Breakdown Voltage	$I_{GES} = \pm 2mA$		±12	±14	-	V
I_{CER}	Collector to	Emitter Leakage Current	$V_{CER} = 250V$	$T_C = 25^{\circ}C$	-	-	25	μΑ
			$R_G = 1K\Omega$, See Fig. 11	T _C = 150°C	-	-	1	m <i>A</i>
I _{ECS}	Emitter to Collector Leakage Current		$V_{EC} = 24V$, See		-	-	1	m/
			Fig. 11 $T_C = 150^{\circ}C$		-	-	40	m/
$\frac{R_1}{R_2}$		e Resistance nitter Resistance			- 10K	75	- 30K	Ω
V _{CE(SAT)}	Collector to	Emitter Saturation Voltage	$I_{C} = 10A,$ $V_{GF} = 4.0V$	T _C = 25°C, See Fig. 4	-	1.17	1.60	V
V _{CE(SAT)}	Collector to	Collector to Emitter Saturation Voltage		T _C = 150°C	-	1.50	1.80	V
Dynamic	Characte	ristics						
Q _{G(ON)}	Gate Charge		I _C = 10A, V _{CE} = 12V, V _{GE} = 5V, See Fig. 14					
~G(ON)		ge			-	32	-	nC
	Gate to Er			Fig. 14	1.3	32	2.2	nC V
V _{GE(TH)}	Gate to Er	ge nitter Threshold Voltage	$V_{GF} = 5V$, See	Fig. 14	1.3 0.75	32 - -	- 2.2 1.8	V
			$V_{GE} = 5V$, See $I_{C} = 1.0$ mA, $V_{CE} = V_{GE}$,	Fig. 14 T _C = 25°C		32 3.0		V
V _{GE(TH)}		nitter Threshold Voltage	V_{GF} = 5V, See I_{C} = 1.0mA, V_{CE} = V_{GE} , See Fig. 10	Fig. 14 $T_{C} = 25^{\circ}C$ $T_{C} = 150^{\circ}C$		-		V
V _{GE(TH)} V _{GEP} Switching	Gate to Er	nitter Threshold Voltage	V_{GF} = 5V, See I_{C} = 1.0mA, V_{CE} = V_{GE} , See Fig. 10	Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CF} = 12V$		-		V
V _{GE(TH)}	Gate to Er Current Tu	nitter Threshold Voltage nitter Plateau Voltage eristics	$\begin{split} &V_{GE}=5\text{V}, \text{See} \\ &I_{C}=1.0\text{mA}, \\ &V_{CE}=V_{GE}, \\ &\text{See Fig. 10} \\ &I_{C}=10\text{A}, \end{split}$	Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CF} = 12V$ = 1Ω $1K\Omega$		3.0	1.8	V V
V _{GEP} Switching t _{d(ON)R}	Gate to Er Gate to Er Gurrent Tu Current Ri	nitter Threshold Voltage nitter Plateau Voltage eristics rn-On Delay Time-Resistive	$V_{GE} = 5V, See$ $I_{C} = 1.0mA,$ $V_{CE} = V_{GE},$ See Fig. 10 $I_{C} = 10A,$ $V_{CE} = 14V, R_{L} = V_{GE} = 5V, R_{G} = T_{J} = 25^{\circ}C, See$ $V_{CE} = 300V, L = 100$	Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CF} = 12V$ = 1Ω , $1K\Omega$ Fig. 12 = $2mH$,		3.0	1.8	ha ha
V _{GEP} Switching t _{d(ON)R} t _{rR}	Gate to Err Current Tu Current Ri Current Tu	nitter Threshold Voltage nitter Plateau Voltage eristics rn-On Delay Time-Resistive se Time-Resistive	$V_{GE} = 5V, See$ $I_{C} = 1.0mA,$ $V_{CE} = V_{GE},$ See Fig. 10 $I_{C} = 10A,$ $V_{CE} = 14V, R_{L} = V_{GE} = 5V, R_{G} = T_{J} = 25^{\circ}C, See$	Fig. 14 $T_{C} = 25^{\circ}C$ $T_{C} = 150^{\circ}C$ $V_{CF} = 12V$ $= 1\Omega,$ $1K\Omega$ Fig. 12 $= 2mH,$ $1K\Omega$		3.0	1.8	ha ha
V_{GEP} Switching $t_{d(ON)R}$ t_{rR} $t_{d(OFF)L}$	Gate to Err Current Tu Current Ri Current Tu Current Tu Current Tu	nitter Threshold Voltage nitter Plateau Voltage eristics rn-On Delay Time-Resistive se Time-Resistive rn-Off Delay Time-Inductive	$\begin{split} &V_{GE} = 5\text{V}, \text{See} \\ &I_{C} = 1.0\text{mA}, \\ &V_{CE} = V_{GE}, \\ &\text{See Fig. 10} \\ &I_{C} = 10\text{A}, \\ \\ &V_{CE} = 14\text{V}, R_{L} = 10\text{V}, R_{C} = 10\text{V}$	Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CF} = 12V$ = 1Ω, 1ΚΩ Fig. 12 = 2mH, 1ΚΩ Fig. 12 Fig. 12 670 μH,		3.0 0.7 2.1 10.8	1.8 - 4 7 15	nC V V V V V V V V V V V V V V V V V V V
V _{GEP} Switching t _{d(ON)R} t _{rR} t _{d(OEF)L} t _{fL} SCIS	Gate to Err Current Tu Current Ri Current Tu Current Tu Current Tu	nitter Threshold Voltage nitter Plateau Voltage eristics rn-On Delay Time-Resistive se Time-Resistive rn-Off Delay Time-Inductive Il Time-Inductive ped Inductive Switching	$\begin{split} &V_{GE} = 5\text{V}, \text{See} \\ &I_{C} = 1.0\text{mA}, \\ &V_{CE} = V_{GE}, \\ &\text{See Fig. 10} \\ &I_{C} = 10\text{A}, \\ \\ &V_{CE} = 14\text{V}, R_{L} = 10\text{V}, R_{C} = 10\text{V}$	Fig. 14 $T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$ $V_{CF} = 12V$ = 1Ω, 1ΚΩ Fig. 12 = 2mH, 1ΚΩ Fig. 12 Fig. 12 670 μH,		3.0 0.7 2.1 10.8	1.8 - 4 7 15	ha h

Typical Characteristics INDUCTIVE SWITCHING CURRENT (A) $R_G = 1K\Omega$, $V_{GE} = 5V$, $V_{dd} = 14V$ 40 35 30 = 25°C 25 20 15 T_J = 150°C 10 scis, 5 Voltages of <390V 0

Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

 t_{CLP} , TIME IN CLAMP (μ S)

Figure 2. Self Clamped Inductive Switching Current vs Inductance

Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

Figure 4.Collector to Emitter On-State Voltage vs Junction Temperature

Figure 5. Collector Current vs Collector to Emitter On-State Voltage

Figure 6. Collector Current vs Collector to Emitter On-State Voltage