


N-Channel Power MOSFET

DESCRIPTION

Process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 $^{\circ}$ C)

Parameter	I	Value	Unit
Drain-Source Voltage	V _{DSS}	55	V
Drain Current - Continuous	I _D	49	Α
Drain Current - Pulsed	I _{DM}	160	Α
Gate-Source Voltage	V_{GSS}	±20	V
Power Dissipation	P _D	94	W
Max. Operating Junction Temperature	T _j	150	°C
Storage Temperature	T _{stg}	-55~150	°C

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0V, I_{D} =250 μ A	55	_	_	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =55V, V _{GS} =0V			10	uA
Gate-Body Leakage Current, Forward	I _{GSSF}	V _{GS} =20V, V _{DS} =0V			100	nA
Gate-Body Leakage Current, Reverse	I _{GSSR}	$V_{GS} = -20V, V_{DS} = 0V$	_	_	-100	nA
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu$ A	2.0	3.0	4.0	V
Static Drain-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}$			0.0175	Ω
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 25 \text{ A}$	_	_	1.3	V