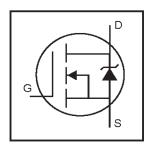
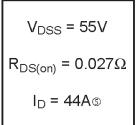
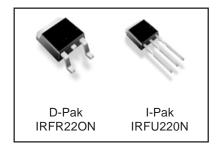


IRFR/U1205PbF


HEXFET® Power MOSFET


- Ultra Low On-Resistance
- Surface Mount (IRFR1205)
- Straight Lead (IRFU1205)
- Fast Switching
- Fully Avalanche Rated
- Lead-Free


Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for throughhole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	44⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	31⑤	A
I _{DM}	Pulsed Drain Current ⊕⊘	160	
P _D @T _C = 25°C	Power Dissipation	107	W
	Linear Derating Factor	0.71	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②⑦	210	mJ
I _{AR}	Avalanche Current⊕⊘	25	Α
E _{AR}	Repetitive Avalanche Energy⊕⊘	11	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{BJC}	Junction-to-Case		1.4	
ReJA	Junction-to-Ambient (PCB mount) **		50	°C/W
Reja	Junction-to-Ambient		110	

IRFR/U1205PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_{D} = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.055	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.027		V _{GS} = 10V, I _D = 26A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g fs	Forward Transconductance	17			S	V _{DS} = 25V, I _D = 25A⑦
	Drain-to-Source Leakage Current			25		$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}				250	μΑ	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
1	Gate-to-Source Forward Leakage			100		V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
Qq	Total Gate Charge			65		I _D = 25A
Q _{gs}	Gate-to-Source Charge			12	nC	V _{DS} = 44V
Q _{gd}	Gate-to-Drain ("Miller") Charge			27		V _{GS} = 10V, See Fig. 6 and 13 ⊕ ⑦
t _{d(on)}	Turn-On Delay Time		7.3			V _{DD} = 28V
tr	Rise Time		69	_	n.	I _D = 25A
t _{d(off)}	Turn-Off Delay Time		47		ns	$R_G = 12\Omega$
tf	Fall Time		60			R _D = 1.1Ω, See Fig. 10 ⊕⑦
L _D	Internal Drain Inductance	_	4.5		nH	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact®
Ciss	Input Capacitance		1300			V _{GS} = 0V
Coss	Output Capacitance		410		рF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		150			f = 1.0MHz, See Fig. 5⑦

Source-Drain Ratings and Characteristics

	•															
	Parameter	Min.	Тур.	Мах.	Units	Conditions										
Is	Continuous Source Current			446		MOSFET symbol										
	(Body Diode) — — 44	44⑤	Α	showing the												
I _{SM}	Pulsed Source Current									400	400	400	'		^	integral reverse
	(Body Diode) ⊕⊘			160		p-n junction diode.										
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 22A, V _{GS} = 0V ⊕										
trr	Reverse Recovery Time	T	65	98	ns	T _J = 25°C, I _F =25A										
Qrr	Reverse RecoveryCharge	T	160	240	nC	di/dt = 100A/µs ⊕ ⑦										
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)														

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- \mathbb{Q} V_{DD} = 25V, starting T_J = 25°C, L = 470 μ H R_G = 25 Ω , I_{AS} = 25A. (See Figure 12)
- $\label{eq:ISD} \begin{tabular}{ll} \begin{$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- ⑤ Calculated continuous current based on maximum allowable junction temperature; Package limitation current = 20A
- ® This is applied for I-PAK, Ls of D-PAK is measured between lead and center of die contact
- ③ Uses IRFZ44N data and test conditions
- ** When mounted on 1" square PCB (FR-4 or G-10 Material) .
 For recommended footprint and soldering techniques refer to application note #AN-994

IRFR/U1205PbF

Fig 1. Typical Output Characteristics

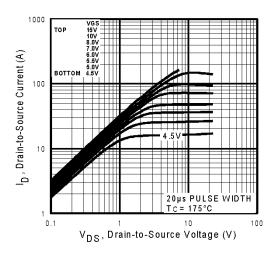


Fig 2. Typical Output Characteristics

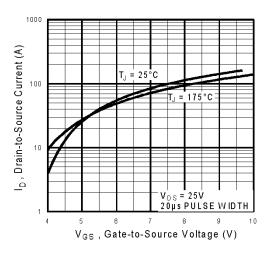


Fig 3. Typical Transfer Characteristics

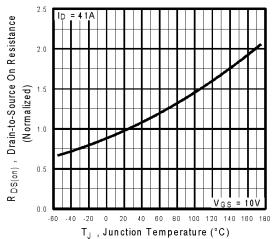


Fig 4. Normalized On-Resistance Vs. Temperature