

# FQP16N25C/FQPF16N25C

### 250V N-Channel MOSFET

#### **General Description**

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

#### **Features**

- 15.6A, 250V,  $R_{DS(on)} = 0.27\Omega @V_{GS} = 10 \text{ V}$
- Low gate charge (typical 41 nC)
- Low Crss (typical 68 pF)
- · Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability



## Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                          |          | FQP16N25C   | FQPF16N25C | Units |  |
|-----------------------------------|----------------------------------------------------|----------|-------------|------------|-------|--|
| $V_{DSS}$                         | Drain-Source Voltage                               |          | 250         |            | V     |  |
| I <sub>D</sub>                    | Drain Current - Continuous (T <sub>C</sub> = 25°C) |          | 15.6        | 15.6 *     | Α     |  |
|                                   | - Continuous (T <sub>C</sub> = 100°C)              |          | 9.8         | 9.8 *      | Α     |  |
| I <sub>DM</sub>                   | Drain Current - Pulsed                             | (Note 1) | 62.4        | 62.4 *     | Α     |  |
| V <sub>GSS</sub>                  | Gate-Source Voltage ± 30                           |          | V           |            |       |  |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy                     | (Note 2) | 410         |            | mJ    |  |
| I <sub>AR</sub>                   | Avalanche Current                                  | (Note 1) | 15.6        |            | Α     |  |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                        | (Note 1) | 13.9        |            | mJ    |  |
| dv/dt                             | Peak Diode Recovery dv/dt                          | (Note 3) | 5.5         |            | V/ns  |  |
| $P_{D}$                           | Power Dissipation (T <sub>C</sub> = 25°C)          |          | 139         | 43         | W     |  |
|                                   | - Derate above 25°C                                |          | 1.11        | 0.34       | W/°C  |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range            |          | -55 to +150 |            | °C    |  |
| T <sub>L</sub>                    | Maximum lead temperature for soldering purposes,   |          | 300         |            | °C    |  |
|                                   | 1/8" from case for 5 seconds                       |          | 300         |            |       |  |

<sup>\*</sup> Drain current limited by maximum junction temperature.

#### **Thermal Characteristics**

| Symbol          | Parameter                               | FQP16N25C | FQPF16N25C | Units |
|-----------------|-----------------------------------------|-----------|------------|-------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case    | 0.9       | 2.89       | °C/W  |
| $R_{\theta JS}$ | Thermal Resistance, Case-to-Sink Typ.   | 0.5       |            | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | 62.5      | 62.5       | °C/W  |

| Symbol                                  | Parameter                                                                                               | Test Conditions                                           | Min | Тур  | Max  | Units |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----|------|------|-------|
| Off Cha                                 | aracteristics                                                                                           |                                                           |     |      |      |       |
| BV <sub>DSS</sub>                       | Drain-Source Breakdown Voltage                                                                          | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$             |     |      |      | V     |
| ΔBV <sub>DSS</sub><br>/ ΔΤ <sub>J</sub> | Breakdown Voltage Temperature<br>Coefficient                                                            | I <sub>D</sub> = 250 μA, Referenced to 25°C               |     | 0.31 |      | V/°C  |
| I <sub>DSS</sub>                        | Zero Gate Voltage Drain Current                                                                         | V <sub>DS</sub> = 250 V, V <sub>GS</sub> = 0 V            |     |      | 10   | μА    |
|                                         |                                                                                                         | V <sub>DS</sub> = 200 V, T <sub>C</sub> = 125°C           |     |      | 100  | μА    |
| I <sub>GSSF</sub>                       | Gate-Body Leakage Current, Forward                                                                      | V <sub>GS</sub> = 30 V, V <sub>DS</sub> = 0 V             |     |      | 100  | nA    |
| I <sub>GSSR</sub>                       | Gate-Body Leakage Current, Reverse                                                                      | V <sub>GS</sub> = -30 V, V <sub>DS</sub> = 0 V            |     |      | -100 | nA    |
| On Cha                                  | racteristics                                                                                            |                                                           |     |      |      |       |
| V <sub>GS(th)</sub>                     | Gate Threshold Voltage                                                                                  | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                      | 2.0 |      | 4.0  | V     |
| R <sub>DS(on)</sub>                     | Static Drain-Source<br>On-Resistance                                                                    | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 7.8 A            |     | 0.22 | 0.27 | Ω     |
| g <sub>FS</sub>                         | Forward Transconductance                                                                                | V <sub>DS</sub> = 40 V, I <sub>D</sub> = 7.8 A (Note 4)   |     | 10.5 |      | S     |
| <b>Dynam</b><br>C <sub>iss</sub>        | Dynamic Characteristics       Ciss     Input Capacitance       VDS = 25 V, VGS = 0 V,                   |                                                           |     | 830  | 1080 | pF    |
| C <sub>oss</sub>                        | Output Capacitance                                                                                      | f = 1.0 MHz                                               |     | 170  | 220  | pF    |
| C <sub>rss</sub>                        | Reverse Transfer Capacitance                                                                            | 1                                                         |     | 68   | 89   | pF    |
| Switchi                                 | ing Characteristics                                                                                     |                                                           |     |      |      |       |
| t <sub>d(on)</sub>                      | Turn-On Delay Time                                                                                      | V - 125 V I - 15 6 A                                      |     | 15   | 40   | ns    |
| t <sub>r</sub>                          | Turn-On Rise Time                                                                                       | $V_{DD}$ = 125 V, $I_{D}$ = 15.6 A, $R_{G}$ = 25 $\Omega$ |     | 130  | 270  | ns    |
| t <sub>d(off)</sub>                     | Turn-Off Delay Time                                                                                     | 1 NG - 23 22                                              |     | 135  | 280  | ns    |
| t <sub>f</sub>                          | Turn-Off Fall Time                                                                                      | (Note 4, 5)                                               |     | 105  | 220  | ns    |
| Qg                                      | Total Gate Charge                                                                                       | V <sub>DS</sub> = 200 V, I <sub>D</sub> = 15.6 A,         |     | 41   | 53.5 | nC    |
| Q <sub>gs</sub>                         | Gate-Source Charge                                                                                      | V <sub>GS</sub> = 10 V                                    |     | 5.6  |      | nC    |
| Q <sub>gd</sub>                         | Gate-Drain Charge                                                                                       | (Note 4, 5)                                               |     | 22.7 |      | nC    |
| Drain 9                                 | Source Diode Characteristics a                                                                          | nd Maximum Patings                                        |     |      |      |       |
| l <sub>S</sub>                          | Source Diode Characteristics and Maximum Ratings  Maximum Continuous Drain-Source Diode Forward Current |                                                           |     |      | 15.6 | Α     |
| I <sub>SM</sub>                         | Maximum Pulsed Drain-Source Diode Forward Current                                                       |                                                           |     |      | 62.4 | Α     |
| V <sub>SD</sub>                         | Drain-Source Diode Forward Voltage                                                                      | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 15.6 A            |     |      | 1.5  | V     |
| t <sub>rr</sub>                         | Reverse Recovery Time                                                                                   | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 15.6 A,           |     | 260  |      | ns    |
| Q <sub>rr</sub>                         | Reverse Recovery Charge                                                                                 | $dI_F / dt = 100 \text{ A/}\mu\text{s}$ (Note 4)          |     | 2.47 |      | μС    |

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 2.7mH,  $I_{AS}$  = 15.6A,  $V_{DD}$  = 50V,  $R_{G}$  = 25  $\Omega$ , Starting  $T_{J}$  = 25°C 3.  $I_{SD} \le 15.6A$ , di/dt  $\le 300A/\mu$ s,  $V_{DD} \le BV_{DSS}$ , Starting  $T_{J}$  = 25°C 4. Pulse Test : Pulse width  $\le 300\mu$ s, Duty cycle  $\le 2\%$  5. Essentially independent of operating temperature

# **Typical Characteristics**



Figure 1. On-Region Characteristics



Figure 2. Transfer Characteristics



Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage



Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature



Figure 5. Capacitance Characteristics



Figure 6. Gate Charge Characteristics

# **Typical Characteristics** (Continued)



vs Temperature



Figure 9-1. Maximum Safe Operating Area for FQP16N25C

V<sub>DS</sub>, Drain-Source Voltage [V]



**Figure 10. Maximum Drain Current** vs Case Temperature



Figure 8. On-Resistance Variation vs Temperature



Figure 9-2. Maximum Safe Operating Area for FQPF16N25C

I<sub>D</sub>, Drain Current [A]

10°