FQP16N25C/FQPF16N25C ### 250V N-Channel MOSFET #### **General Description** These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls. #### **Features** - 15.6A, 250V, $R_{DS(on)} = 0.27\Omega @V_{GS} = 10 \text{ V}$ - Low gate charge (typical 41 nC) - Low Crss (typical 68 pF) - · Fast switching - · 100% avalanche tested - · Improved dv/dt capability ## Absolute Maximum Ratings T_C = 25°C unless otherwise noted | Symbol | Parameter | | FQP16N25C | FQPF16N25C | Units | | |-----------------------------------|--|----------|-------------|------------|-------|--| | V_{DSS} | Drain-Source Voltage | | 250 | | V | | | I _D | Drain Current - Continuous (T _C = 25°C) | | 15.6 | 15.6 * | Α | | | | - Continuous (T _C = 100°C) | | 9.8 | 9.8 * | Α | | | I _{DM} | Drain Current - Pulsed | (Note 1) | 62.4 | 62.4 * | Α | | | V _{GSS} | Gate-Source Voltage ± 30 | | V | | | | | E _{AS} | Single Pulsed Avalanche Energy | (Note 2) | 410 | | mJ | | | I _{AR} | Avalanche Current | (Note 1) | 15.6 | | Α | | | E _{AR} | Repetitive Avalanche Energy | (Note 1) | 13.9 | | mJ | | | dv/dt | Peak Diode Recovery dv/dt | (Note 3) | 5.5 | | V/ns | | | P_{D} | Power Dissipation (T _C = 25°C) | | 139 | 43 | W | | | | - Derate above 25°C | | 1.11 | 0.34 | W/°C | | | T _J , T _{STG} | Operating and Storage Temperature Range | | -55 to +150 | | °C | | | T _L | Maximum lead temperature for soldering purposes, | | 300 | | °C | | | | 1/8" from case for 5 seconds | | 300 | | | | ^{*} Drain current limited by maximum junction temperature. #### **Thermal Characteristics** | Symbol | Parameter | FQP16N25C | FQPF16N25C | Units | |-----------------|---|-----------|------------|-------| | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | 0.9 | 2.89 | °C/W | | $R_{\theta JS}$ | Thermal Resistance, Case-to-Sink Typ. | 0.5 | | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | 62.5 | 62.5 | °C/W | | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |---|---|---|-----|------|------|-------| | Off Cha | aracteristics | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | | | | V | | ΔBV _{DSS}
/ ΔΤ _J | Breakdown Voltage Temperature
Coefficient | I _D = 250 μA, Referenced to 25°C | | 0.31 | | V/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 250 V, V _{GS} = 0 V | | | 10 | μА | | | | V _{DS} = 200 V, T _C = 125°C | | | 100 | μА | | I _{GSSF} | Gate-Body Leakage Current, Forward | V _{GS} = 30 V, V _{DS} = 0 V | | | 100 | nA | | I _{GSSR} | Gate-Body Leakage Current, Reverse | V _{GS} = -30 V, V _{DS} = 0 V | | | -100 | nA | | On Cha | racteristics | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 2.0 | | 4.0 | V | | R _{DS(on)} | Static Drain-Source
On-Resistance | V _{GS} = 10 V, I _D = 7.8 A | | 0.22 | 0.27 | Ω | | g _{FS} | Forward Transconductance | V _{DS} = 40 V, I _D = 7.8 A (Note 4) | | 10.5 | | S | | Dynam
C _{iss} | Dynamic Characteristics Ciss Input Capacitance VDS = 25 V, VGS = 0 V, | | | 830 | 1080 | pF | | C _{oss} | Output Capacitance | f = 1.0 MHz | | 170 | 220 | pF | | C _{rss} | Reverse Transfer Capacitance | 1 | | 68 | 89 | pF | | Switchi | ing Characteristics | | | | | | | t _{d(on)} | Turn-On Delay Time | V - 125 V I - 15 6 A | | 15 | 40 | ns | | t _r | Turn-On Rise Time | V_{DD} = 125 V, I_{D} = 15.6 A, R_{G} = 25 Ω | | 130 | 270 | ns | | t _{d(off)} | Turn-Off Delay Time | 1 NG - 23 22 | | 135 | 280 | ns | | t _f | Turn-Off Fall Time | (Note 4, 5) | | 105 | 220 | ns | | Qg | Total Gate Charge | V _{DS} = 200 V, I _D = 15.6 A, | | 41 | 53.5 | nC | | Q _{gs} | Gate-Source Charge | V _{GS} = 10 V | | 5.6 | | nC | | Q _{gd} | Gate-Drain Charge | (Note 4, 5) | | 22.7 | | nC | | Drain 9 | Source Diode Characteristics a | nd Maximum Patings | | | | | | l _S | Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current | | | | 15.6 | Α | | I _{SM} | Maximum Pulsed Drain-Source Diode Forward Current | | | | 62.4 | Α | | V _{SD} | Drain-Source Diode Forward Voltage | V _{GS} = 0 V, I _S = 15.6 A | | | 1.5 | V | | t _{rr} | Reverse Recovery Time | V _{GS} = 0 V, I _S = 15.6 A, | | 260 | | ns | | Q _{rr} | Reverse Recovery Charge | $dI_F / dt = 100 \text{ A/}\mu\text{s}$ (Note 4) | | 2.47 | | μС | - **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 2.7mH, I_{AS} = 15.6A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C 3. $I_{SD} \le 15.6A$, di/dt $\le 300A/\mu$ s, $V_{DD} \le BV_{DSS}$, Starting T_{J} = 25°C 4. Pulse Test : Pulse width $\le 300\mu$ s, Duty cycle $\le 2\%$ 5. Essentially independent of operating temperature # **Typical Characteristics** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics # **Typical Characteristics** (Continued) vs Temperature Figure 9-1. Maximum Safe Operating Area for FQP16N25C V_{DS}, Drain-Source Voltage [V] **Figure 10. Maximum Drain Current** vs Case Temperature Figure 8. On-Resistance Variation vs Temperature Figure 9-2. Maximum Safe Operating Area for FQPF16N25C I_D, Drain Current [A] 10°