FJPF2145

ESBC ${ }^{\text {TM }}$ Rated NPN Power Transistor

ESBC Features（FDC655 MOSFET）

$\mathbf{V}_{\mathbf{C S}(\mathbf{O N})}$	$\mathbf{I}_{\mathbf{C}}$	Equiv． $\mathbf{R}_{\mathbf{C S}(\mathbf{O N})}{ }^{(1)}$
0.21 V	2 A	0.105Ω

－Low Equivalent On Resistance
－Very Fast Switch： 150 kHz
－Wide RBSOA：Up to 1100 V
－Avalanche Rated
－Low Driving Capacitance，no Miller Capacitance
－Low Switching Losses
－Reliable HV Switch：No False Triggering due to High dv／dt Transients

Applications

－High－Voltage，High－Speed Power Switches
－Emitter－Switched Bipolar／MOSFET Cascode （ESBC ${ }^{\text {TM }}$ ）
－Smart Meters，Smart Breakers，SMPS， HV Industrial Power Supplies
－Motor Drivers and Ignition Drivers

Description

The FJPF2145 is a low－cost，high－performance power switch designed to provide the best performance when used in an ESBC ${ }^{\text {TM }}$ configuration in applications such as： power supplies，motor drivers，smart grid，or ignition switches．The power switch is designed to operate up to 1100 volts and up to 5 amps ，while providing exception－ ally low on－resistance and very low switching losses．
The ESBC ${ }^{\text {TM }}$ switch can be driven using off－the－shelf power supply controllers or drivers．The ESBC ${ }^{\text {TM }}$ MOS－ FET is a low－voltage，low－cost，surface－mount device that combines low－input capacitance and fast switching．The $E S B C^{T M}$ configuration further minimizes the required driv－ ing power because it does not have Miller capacitance．

The FJPF2145 provides exceptional reliability and a large operating range due to its square reverse－bias－safe－oper－ ating－area（RBSOA）and rugged design．The device is avalanche rated and has no parasitic transistors，so is not prone to static $\mathrm{dv} / \mathrm{dt}$ failures．
The power switch is manufactured using a dedicated high－voltage bipolar process and is packaged in a high－ voltage TO－220F package．

Figure 1．Pin Configuration

Figure 2．Internal Schematic Diagram

Figure 3．ESBC Configuration ${ }^{(2)}$

Ordering Information

Part Number	Marking	Package	Packing Method
FJPF2145TU	J2145	TO－220F	TUBE

Notes：

1．Figure of Merit．
2．Other Fairchild MOSFETs can be used in this ESBC application．

Absolute Maximum Ratings ${ }^{(3)}$

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted..

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage	1100	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	800	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage	7	V
I_{C}	Collector Current (DC)	5	A
I_{B}	Base Current	1.5	A
P_{C}	Collector Dissipation $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	40	W
$\mathrm{~T}_{\mathrm{J}}$	Operating and Junction Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{EAR}^{(4)}$	Avalanche Energy $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1.2 \mathrm{mH}\right)$	15	mJ

Notes:

3. Pulse test is pulse width $\leq 5 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
4. Lab characterization data only for reference.

Thermal Characteristics

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Max.	Units
$\mathrm{R}_{\theta \mathrm{jc}}$	Thermal Resistance, Junction to Case	3.125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{ja}}$	Thermal Resistance, Junction to Ambient	70.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(5)}$

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$	1100			V
$\mathrm{BV}_{\text {CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	800			V
$\mathrm{BV}_{\text {EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0$	7			V
$\mathrm{I}_{\text {CBO }}$	Collector Cut-off Current	$\mathrm{V}_{\mathrm{CB}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {EBO }}$	Emitter Cut-off Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$			10	$\mu \mathrm{A}$
$\mathrm{h}_{\text {FE1 }}$	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}$	20		40	
$\mathrm{h}_{\text {FE2 }}$		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$	8			
V_{CE} (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=0.25 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~A}$		0.051		V
		$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.167 \mathrm{~A}$		0.055		V
		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.33 \mathrm{~A}$		0.085		V
		$\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~A}$		0.159	2.000	V
V_{BE} (sat)	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$		0.756		V
		$\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~A}$		0.840	1.500	V
		$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A}$		0.863		V
$\mathrm{C}_{1 \mathrm{~B}}$	Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1 \mathrm{MHz}$		1.618		pF
C_{OB}	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$		11.39		pF
f_{T}	Current Gain Bandwidth Product	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}$		15		MHz

Note:

5. Pulse test is pulse width $\leq 5 \mathrm{~ms}$, duty cycle $\leq 10 \%$.

ESBC-Configured Electrical Characteristics ${ }^{(6)}$

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
f_{T}	Current Gain Bandwidth Product	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$		28.40		MHz
It_{f}	Inductive Current Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=47 \Omega, \\ & \mathrm{~V}_{\mathrm{Clamp}}=500 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~A}, \mathrm{H}_{\mathrm{FE}}=10, \mathrm{~L}_{\mathrm{C}}=166 \mu \mathrm{H}, \\ & \mathrm{SRF}=684 \mathrm{kHz} \end{aligned}$		95		ns
$\mathrm{t}_{\text {s }}$	Inductive Storage Time			0.13		ns
Vt_{f}	Inductive Voltage Fall Time			135		ns
Vt_{r}	Inductive Voltage Rise Time			80		ns
t_{c}	Inductive Crossover Time			115		ns
It_{f}	Inductive Current Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=47 \Omega, \\ & \mathrm{~V}_{\mathrm{Clamp}}=500 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A}, \mathrm{H}_{\mathrm{FE}}=5, \mathrm{~L}_{\mathrm{C}}=166 \mu \mathrm{H}, \\ & \mathrm{SRF}=684 \mathrm{kHz} \end{aligned}$		50		ns
$\mathrm{t}_{\text {s }}$	Inductive Storage Time			0.34		ns
Vt_{f}	Inductive Voltage Fall Time			150		ns
Vt_{r}	Inductive Voltage Rise Time			60		ns
t_{c}	Inductive Crossover Time			95		ns
$\mathrm{V}_{\text {CSW }}$	Maximum Collector- Source Voltage at Turn-off without Snubber	$\mathrm{h}_{\text {FE }}=5, \mathrm{l}_{\mathrm{C}}=2 \mathrm{~A}$	1100			V
$\mathrm{I}_{\mathrm{GS}(\mathrm{OS})}$	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		1		nA
$\mathrm{V}_{\mathrm{CS}(\mathrm{ON})}$	Collector-Source On Voltage	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.67 \mathrm{~A}, \mathrm{~h}_{\text {FE }}=3$		0.209		V
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.33 \mathrm{~A}, \mathrm{~h}_{\mathrm{FE}}=3$		0.114		V
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.17 \mathrm{~A}, \mathrm{~h}_{\mathrm{FE}}=3$		0.068		V
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.06 \mathrm{~A}, \mathrm{~h}_{\mathrm{FE}}=5$		0.062		V
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{B}}=250 \mu \mathrm{~A}$		1.9		V
$\mathrm{C}_{\text {iss }}$	Input Capacitance $\left(V_{G S}=V_{C B}=0\right)$	$\mathrm{V}_{\mathrm{CS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		470		pF
$\mathrm{Q}_{\mathrm{GS} \text { (tot) }}$	Gate-Source Change $V_{C B}=0$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=6.3 \mathrm{~A}, \mathrm{~V}_{\mathrm{CS}}=25 \mathrm{~V}$		9		nC
$\mathrm{R}_{\text {DS(ON) }}$	Static Drain-to-Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}$		21		$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.5 \mathrm{~A}$		26		$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		30		$\mathrm{m} \Omega$

Note:

6. A typical FDC655 MOSFET was used for the specifications above. Values could vary if other Fairchild MOSFETs are used.
