

FDD6796A / FDU6796A_F071

N-Channel PowerTrench® MOSFET 25 V, 5.7 m Ω

Features

- Max $r_{DS(on)} = 5.7 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$
- Max $r_{DS(on)}$ = 15.0 m Ω at V_{GS} = 4.5 V, I_D = 15.2 A
- 100% UIL tested
- RoHS Compliant

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\mbox{\scriptsize DS(on)}}$ and fast switching speed.

Applications

- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V_{DS}	Drain to Source Voltage			25	V
V_{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		40	
	-Continuous (Silicon limited)	T _C = 25 °C		67	^
ID	-Continuous	T _A = 25 °C	(Note 1a)	20	Α
	-Pulsed			150	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	40	mJ
	Power Dissipation	T _C = 25 °C		42	W
P_{D}	Power Dissipation	T _A = 25 °C	(Note 1a)	3.7	VV
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		3.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD6796A	FDD6796A	D-PAK (TO-252)	13 "	12 mm	2500 units
FDU6796A	FDU6796A_F071	TO-251AA	N/A(Tube)	N/A	75 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	25			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		16		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.0	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		-6		mV/°C
		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$		4.3	5.7	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 15.2 \text{ A}$		11.1	15.0	mΩ
, ,		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 150 ^{\circ}\text{C}$		6.5	8.6	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 20 \text{ A}$		118		S

Dynamic Characteristics

C _{iss}	Input Capacitance		1336	1780	pF
C _{oss}	Output Capacitance	$V_{DS} = 13 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz	298	400	pF
C _{rss}	Reverse Transfer Capacitance	I = 1 IVITIZ	266	400	pF
R_g	Gate Resistance		1.2		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		8	16	ns
t _r	Rise Time	V _{DD} = 13 V, I _D = 20 A,	7	14	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	19	34	ns
t _f	Fall Time		4	10	ns
Q_g	Total Gate Charge	V _{GS} = 0 V to 10 V	24	34	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to 5 V}$ $V_{DD} = 13 \text{ V},$	14	20	nC
Q _{gs}	Gate to Source Charge	I _D = 20 A	4.0		nC
Q_{gd}	Gate to Drain "Miller" Charge		5.7		nC

Drain-Source Diode Characteristics

V _{SD} Source to Drain Diode Forward	Source to Drain Diode, Ferward Voltage	V _{GS} = 0 V, I _S = 3.1 A (Note 2)	0.8	1.2	W
	Source to Drain blode Forward voltage	$V_{GS} = 0 \text{ V}, I_S = 20 \text{ A}$ (Note 2)	0.9	1.3	V
t _{rr}	Reverse Recovery Time	- I _F = 20 A, di/dt = 100 A/μs	15	27	ns
Q _{rr}	Reverse Recovery Charge	- I _F = 20 A, αl/αt = 100 A/μs	4	10	nC

Notes: 1: $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a) 40 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 96 °C/W when mounted on a minimum pad

^{2:} Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3: E_{AS} of 40 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 9 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 21 A.

Typical Characteristics T_J = 25 °C unless otherwise noted

Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current