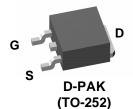
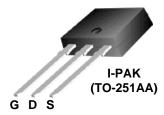


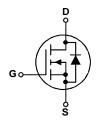
FDD6682/FDU6682

30V N-Channel PowerTrench^O MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.


Applications


- DC/DC converter
- Motor Drives

Features

- 75 A, 30 V $R_{DS(ON)} = 6.2 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 8.0 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$
- · Low gate charge
- · Fast switching
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	
I _D	Drain Current - Continuous	(Note 3)	75	А
	- Pulsed	(Note 1a)	100	
P _D	Power Dissipation for Single Operation	(Note 1)	71	W
		(Note 1a)	3.8	
		(Note 1b)	1.6	
T _J , T _{STG}	Operating and Storage Junction Temperation	ture Range	-55 to +175	°C

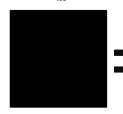
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	2.1	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDD6682	FDD6682	D-PAK (TO-252)	13"	12mm	2500 units
FDU6682	FDU6682	I-PAK (TO-251)	Tube	N/A	75

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Note	2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 15 \text{ V}$, $I_D = 17 \text{ A}$			240	mJ
I _{AR}	Drain-Source Avalanche Current				17	Α
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		20		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.9	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-7		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		5.2 6.4 8.0	6.2 8 11.9	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	50			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \qquad I_{D} = 17 \text{ A}$		65		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			2400		pF
Coss	Output Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		577		pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		258		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$		1.4		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time			14	20	ns
t _r	Turn-On Rise Time	$V_{DD} = 15 \text{ V}, \qquad I_{D} = 1 \text{ A},$		12	37	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		38	64	ns
t _f	Turn-Off Fall Time			18	32	ns
Q _g	Total Gate Charge			24	31	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = 15V,$ $I_{D} = 17 A,$ $V_{GS} = 5 V$		6.5		nC
Q _{qd}	Gate-Drain Charge	- VGS - 3 V		8.1		nC


Electrical Characteristics (continued)

T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units		
Drain-Source Diode Characteristics and Maximum Ratings								
Is	Maximum Continuous Drain–Source Diode Forward Current				3.2	Α		
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 3.2 \text{ A} \text{(Note 2)}$		0.7	1.2	V		
t _{rr}	Diode Reverse Recovery Time	$I_F = 17 \text{ A}, \qquad d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$		32		nS		
Q _{rr}	Diode Reverse Recovery Charge			20		nC		

Notes

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) R_{BJA} = 40°C/W when mounted on a 1in² pad of 2 oz copper

b) $R_{\theta JA} = 96^{\circ}\text{C/W}$ when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

3. Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$

where P_D is maximum power dissipation at $T_C = 25^{\circ}C$ and $R_{DS(on)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A

Typical Characteristics

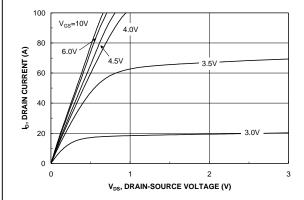


Figure 1. On-Region Characteristics.

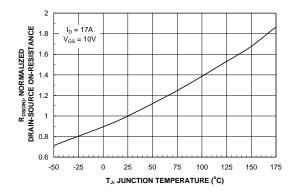


Figure 3. On-Resistance Variation with Temperature.

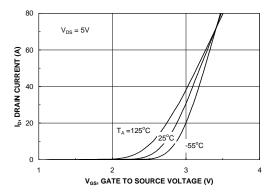


Figure 5. Transfer Characteristics

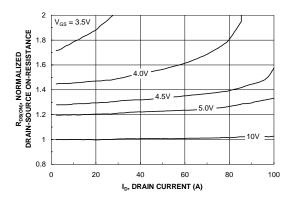


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

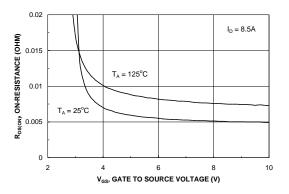


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

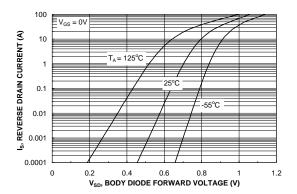


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature