FDP10N50F／FDPF10N50FT

N－Channel MOSFET 500V，9A， 0.85Ω

Features

－$R_{D S(o n)}=0.71 \Omega$（ Typ．）$@ V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A}$
－Low Gate Charge（ Typ．18nC）
－Low $\mathrm{C}_{\text {rss }}$（Typ．10pF）
－Fast Switching
－ 100% Avalanche Tested
－Improved dv／dt Capability
－RoHS Compliant

Description

These N－Channel enhancement mode power field effect transis－ tors are produced using Fairchild＇s proprietary，planar stripe， DMOS technology．

This advance technology has been especially tailored to mini－ mize on－state resistance，provide superior switching perfor－ mance，and withstand high energy pulse in the avalanche and commutation mode．These devices are well suited for high effi－ cient switching mode power supplies and active power factor correction．

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted ${ }^{*}$

Symbol		Parameter		FDP10N50F	FDPF10N50FT	Units
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage			500		V
$\mathrm{V}_{\text {GSS }}$	Gate to Source Voltage			± 30		V
I_{D}	Drain Current	－Continuous（ $\mathrm{T}_{\mathrm{C}}=25$		9	9＊	A
		－Continuous（ $\mathrm{T}_{\mathrm{C}}=10$		5.4	5．4＊	
Im	Drain Current	－Pulsed	（Note 1）	36	36＊	A
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy		（Note 2）	364		mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current		（Note 1）	9		A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy		（Note 1）	12.5		mJ
dv／dt	Peak Diode Recovery dv／dt		（Note 3）	20		V／ns
P_{D}	Power Dissipation	$\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$		125	42	W
		－Derate above $25^{\circ} \mathrm{C}$		1.0	0.33	W／${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range			-55 to +150		${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering Purpose， $1 / 8^{\prime \prime}$ from Case for 5 Seconds			300		${ }^{\circ} \mathrm{C}$

＊Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	FDP10N50F	FDPF10N50FT	Units
$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance，Junction to Case	1.0	3.0	
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance，Junction to Ambient	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Package Marking and Ordering Information $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP10N50F	FDP10N50F	TO-220	-	-	50
FDPF10N50FT	FDPF10N50FT	TO-220F	-	-	50

Electrical Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Off Characteristics						
$\mathrm{BV}_{\text {DSs }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	500	-	-	V
$\frac{\Delta \mathrm{BV} \mathrm{DSS}^{2}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	-	0.5	-	V/ ${ }^{\circ} \mathrm{C}$
Idss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
		$V_{\text {DS }}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	-	100	
IGSS	Gate to Body Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3.0	-	5.0	V
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A}$	-	0.71	0.85	Ω
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A}$	(Note 4)	-	8.5	-

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		-	880	1170	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			-	120	160	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			-	10	15	pF
Q_{g}	Total Gate Charge at 10V	$V_{G S}=10 \mathrm{~V}$ (Note 4, 5)		-	18	24	nC
Q_{gs}	Gate to Source Gate Charge			-	5	-	nC
$Q_{\text {gd }}$	Gate to Drain "Miller" Charge			-	7.5	-	nC

Switching Characteristics

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=250 V, I_{D}=10 A \\ & R_{G}=25 \Omega \end{aligned}$	(Note 4, 5)	-	20	50	ns
t_{r}	Turn-On Rise Time			-	40	90	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time			-	45	100	ns
t_{f}	Turn-Off Fall Time			-	30	70	ns

Drain-Source Diode Characteristics

$\mathrm{I}_{\text {S }}$	Maximum Continuous Drain to Source Diode Forward Current			-	-	9	A
ISM	Maximum Pulsed Drain to Source Diode Forward Current			-	-	60	A
$\mathrm{V}_{\text {SD }}$	Drain to Source Diode Forward Voltage	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=9 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=9 \mathrm{~A} \\ & \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		-	-	1.5	V
$\mathrm{t}_{\text {rr }}$	Reverse Recovery Time		(Note 4)	-	95	-	ns
Q_{rr}	Reverse Recovery Charge			-	0.2	-	$\mu \mathrm{C}$

Notes:

1: Repetitive Rating: Pulse width limited by maximum junction temperature
2: $\mathrm{L}=9 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=9 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
3: $\mathrm{I}_{\mathrm{SD}} \leq 8 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{BV}_{\mathrm{DSS}}$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
3: $\mathrm{ISD}_{2} \leq 8 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 A / \mu \mathrm{S}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{BV}$ DSS, Starting
4: Pulse Test: Pulse width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$
5: Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

