FDPF045N10A

N-Channel PowerTrench ${ }^{\circledR}$ MOSFET 100V, 67A, 4.5m Ω

Features

- $R_{D S(o n)}=3.7 \mathrm{~m} \Omega$ (Typ.) $@ V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=67 \mathrm{~A}$
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$
- High Power and Current Handling Capability
- RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

- DC to DC Converters
- Synchronous Rectification for Telecommunication PSU
- Battery Charger
- AC motor drives and Uninterruptible Power Supplies
- Off-line UPS

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted*

Symbol	Parameter			Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage			100	V
$\mathrm{V}_{\text {GSS }}$	Gate to Source Voltage			± 20	V
I_{D}	Drain Current	- Continuous ($\mathrm{T}_{\mathrm{C}}=25$		67	A
		- Continuous ($\mathrm{T}_{\mathrm{C}}=10$		47	
$\mathrm{I}_{\text {DM }}$	Drain Current	- Pulsed	(Note 1)	268	A
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy		(Note 2)	637	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	6.0	V/ns
P_{D}	Power Dissipation	$\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$		43	W
		- Derate above $25^{\circ} \mathrm{C}$		0.29	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range			-55 to +175	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance, Junction to Case	3.5	
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction to Ambient	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDPF045N10A	FDPF045N10A	TO-220F	-	-	50

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Off Characteristics						
$B V_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	100	-	-	V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	-	0.06	-	V/ ${ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	500	
$\mathrm{I}_{\text {GSS }}$	Gate to Body Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0	-	4.0	V
$\mathrm{R}_{\mathrm{DS}(\text { on) }}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=67 \mathrm{~A}$	-	3.7	4.5	$\mathrm{~m} \Omega$
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=67 \mathrm{~A}$	(Note 4)	-	127	-

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	3961	5270	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	925	1230	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		-	34	-	pF
$\mathrm{C}_{\text {oss }}$ (er)	Engry Releted Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	1521	-	pF
$\mathrm{Q}_{\mathrm{g} \text { (tot) }}$	Total Gate Charge at 10V	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=100 \mathrm{~A} \end{aligned}$	-	57	74	nC
Q_{gs}	Gate to Source Gate Charge		-	17	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau		-	8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	13	-	nC

Switching Characteristics

$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=50 \mathrm{~V}, I_{D}=100 \mathrm{~A} \\ & V_{G S}=10 \mathrm{~V}, R_{G E N}=4.7 \Omega \end{aligned}$ (Note 4, 5)	-	23	56	ns
t_{r}	Turn-On Rise Time		-	26	62	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	50	110	ns
t_{f}	Turn-Off Fall Time		-	15	40	ns
ESR	Equivalent Series Resistance (G-S)	Drain Open, $\mathrm{f}=1 \mathrm{MHz}$	-	1.9	-	Ω

Drain-Source Diode Characteristics

I_{S}	Maximum Continuous Drain to Source Diode Forward Current		-	-	67	A
$\mathrm{I}_{\text {SM }}$	Maximum Pulsed Drain to Source Diode Forward Current		-	-	268	A
$\mathrm{V}_{\text {SD }}$	Drain to Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=67 \mathrm{~A}$	-	-	1.3	V
$\mathrm{t}_{\text {rr }}$	Reverse Recovery Time	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=100 \mathrm{~A} \\ & \mathrm{II}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & (\text { Note } 4) \end{aligned}$	-	75	-	ns
$Q_{\text {rr }}$	Reverse Recovery Charge		-	120	-	nC

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature
2. $\mathrm{L}=3 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=20.6 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=25 \Omega$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
3. $\mathrm{I}_{\mathrm{SD}} \leq 100 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq B V_{\mathrm{DSS}}$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
4. Pulse Test: Pulse width $\leq 300 \mu \mathrm{~s}$, Dual Cycle $\leq 2 \%$
5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

