

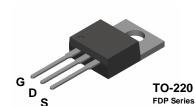
FDP2570/FDB2570

150V N-Channel PowerTrench® MOSFET

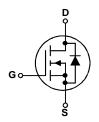
General Description

This N-Channel MOSFET has been designed specifically for switching on the primary side in the isolated DC/DC converter application. Any application requiring a 150V MOSFETs with low on-resistance and fast switching will benefit.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $RDS_{(\text{ON})}$ specifications.


The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features


TO-263AB

FDB Series

- 22 A, 150 V. $R_{DS(ON)} = 80 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 90 \text{ m}\Omega$ @ $V_{GS} = 6 \text{ V}$
- Low gate charge (40nC typical)
- · Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}
- 175°C maximum junction temperature rating

Absolute Maximum Ratings T_A=25°C unless otherwise noted

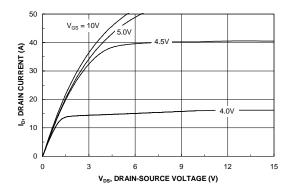
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		150	V
V _{GSS}	Gate-Source Voltage		± 20	V
I _D	Drain Current - Continuous	(Note 1)	22	А
	- Pulsed	(Note 1)	50	Α
P _D	Total Power Dissipation @ T _C = 25°C		93	W
	Derate above 25°C		0.63	W°/C
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-65 to +175	°C

Thermal Characteristics

R _{eJC}	Thermal Resistance, Junction-to-Case	1.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

Package Marking and Ordering Information

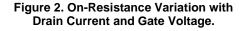
Device Marking	Device	Reel Size	Tape width	Quantity
FDB2570	FDB2570	13"	24mm	800 units
FDP2570	FDP2570	Tube	n/a	45 units

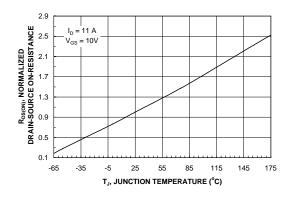

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	ource Avalanche Ratings (Note	1)		l	I	I
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 75 \text{ V}, \qquad I_{D} = 11 \text{ A}$			375	mJ
I _{AR}	Maximum Drain-Source Avalanche Current				11	Α
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	150			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		154		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 120 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	2	2.6	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-7		mV/°C
R _{DS(on)}	Static Drain-Source	$V_{GS} = 10 \text{ V}, \qquad I_{D} = 11 \text{ A}$		61	80	mΩ
	On–Resistance	$V_{GS} = 6.0 \text{ V}, \qquad I_{D} = 10 \text{ A}$		63	90	
		V _{GS} = 10 V, I _D = 11 A, T _J = 125°C		127	175	
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	25			A
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 11 \text{ A}$		39		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 75 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		1911		pF
Coss	Output Capacitance	f = 1.0 MHz		106		pF
C _{rss}	Reverse Transfer Capacitance			33		pF
Switchin	ng Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 75 \text{ V}, \qquad I_{D} = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		12	22	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time			33	53	ns
t _f	Turn-Off Fall Time			23	37	ns
Qg	Total Gate Charge	$V_{DS} = 75 \text{ V}, \qquad I_{D} = 11 \text{ A}, \\ V_{GS} = 10 \text{ V}$		40	56	nC
Q _{gs}	Gate-Source Charge			7		nC
Q_{gd}	Gate-Drain Charge			12		nC
	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain–Source	Diode Forward Current			22	А
V _{SD}	Drain–Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 11 A (Note 2)		0.83	1.3	V

Notes

- 1. Calculated continuous current based on maximum allowable junction temperature.
- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

30


Typical Characteristics


R_{DS(ON)}, NORMALIZED DRAIN-SOURCE ON-RESISTANCE 0.8 0 15 I_D, DRAIN CURRENT (A)

. V_{GS} = 4.0V

Figure 1. On-Region Characteristics.

5.0V

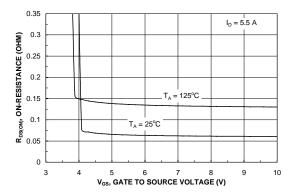
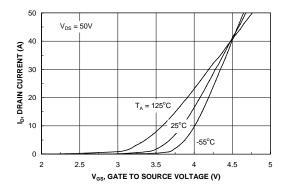



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

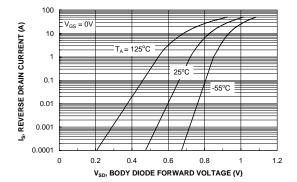


Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.