2SK4111 ### **Switching Regulator Applications** Unit: mm • Low drain-source ON resistance: $R_{DS (ON)} = 0.54 \Omega (typ.)$ High forward transfer admittance: |Yfs| = 8.5 S (typ.) Low leakage current: I_{DSS} = 100 μA (max) (V_{DS} = 600 V) • Enhancement mode: V_{th} = 2.0 to 4.0 V (V_{DS} = 10 V, I_D = 1 mA) ### Absolute Maximum Ratings (Ta = 25°C) | Characteristics | | Symbol | Rating | Unit | | |---------------------------|-------------------------------|------------------|------------|------|--| | Drain-source voltage | | V_{DSS} | 600 | V | | | Drain-gate voltage (F | $R_{GS} = 20 \text{ k}\Omega$ | V_{DGR} | 600 | V | | | Gate-source voltage | | V_{GSS} | ±30 | ٧ | | | Drain current | DC (Note 1) | I _D | 10 | А | | | | Pulse (t = 1 ms)
(Note 1) | I _{DP} | 40 | | | | Drain power dissipati | on (Tc = 25°C) | P _D | 45 | W | | | Single pulse avalance | he energy
(Note 2) | E _{AS} | 363 | mJ | | | Avalanche current | | I _{AR} | 10 | Α | | | Repetitive avalanche | energy (Note 3) | E _{AR} | 4.5 | mJ | | | Channel temperature | | T _{ch} | 150 | °C | | | Storage temperature range | | T _{stg} | -55 to 150 | °C | | Weight: 1.9 g (typ.) Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). #### **Thermal Characteristics** | Characteristics | Symbol | Max | Unit | |--|------------------------|------|------| | Thermal resistance, channel to case | R _{th (ch-c)} | 2.78 | °C/W | | Thermal resistance, channel to ambient | R _{th (ch-a)} | 62.5 | °C/W | Note 1: Ensure that the channel temperature does not exceed 150°C. Note 2: $V_{DD} = 90 \text{ V}$, $T_{ch} = 25^{\circ}\text{C(initial)}$, L = 6.36 mH, $I_{AR} = 10 \text{ A}$, $R_G = 25 \Omega$ ## **Electrical Characteristics (Ta = 25°C)** | Charac | cteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |------------------------------|---------------|----------------------|---|-----|------|------|------| | Gate leakage curre | ent | I _{GSS} | $V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$ | _ | _ | ±10 | μΑ | | Gate-source break | down voltage | V (BR) GSS | $I_G=\pm 10~\mu A,~V_{DS}=0~V$ | ±30 | _ | _ | V | | Drain cut-off curre | nt | I _{DSS} | V _{DS} = 600 V, V _{GS} = 0 V | _ | _ | 100 | μΑ | | Drain-source breal | kdown voltage | V (BR) DSS | $I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$ | 600 | _ | _ | V | | Gate threshold vol | tage | V _{th} | V _{DS} = 10 V, I _D = 1 mA | 2.0 | _ | 4.0 | V | | Drain-source ON r | esistance | R _{DS (ON)} | V _{GS} = 10 V, I _D = 5 A | _ | 0.54 | 0.75 | Ω | | Forward transfer a | dmittance | Y _{fs} | V _{DS} = 10 V, I _D = 5 A | 2.4 | 8.5 | _ | S | | Input capacitance | | C _{iss} | V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz | _ | 1500 | _ | pF | | Reverse transfer capacitance | | C _{rss} | | _ | 15 | _ | | | Output capacitance | | Coss | | _ | 180 | _ | | | Switching time | Rise time | t _r | $\begin{array}{c c} 10 \text{ V} & \text{ID} = 5 \text{ A} & \text{VOUT} \\ \hline \text{VGS} & \text{VOD} & \text{RL} = \\ 50 \Omega & \text{VOD} \approx 200 \text{ V} \end{array}$ | _ | 22 | _ | | | | Turn-on time | t _{on} | | | 50 | | 20 | | | Fall time | t _f | | | 36 | | ns | | | Turn-off time | t _{off} | Duty \leq 1%, $t_W = 10 \mu s$ | | 180 | | | | Total gate charge | | Qg | | | 42 | | | | Gate-source charge | | Q _{gs} | $V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ | | 23 | | nC | | Gate-drain charge | | Q _{gd} | | _ | 19 | _ | | ## **Source-Drain Ratings and Characteristics (Ta = 25°C)** | Characteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |--|------------------|--|-----|------|------|------| | Continuous drain reverse current (Note 1 | I _{DR} | _ | _ | _ | 10 | Α | | Pulse drain reverse current (Note 1) | I _{DRP} | _ | _ | _ | 40 | Α | | Forward voltage (diode) | V _{DSF} | I _{DR} = 10 A, V _{GS} = 0 V | _ | _ | -1.7 | V | | Reverse recovery time | t _{rr} | I _{DR} = 10 A, V _{GS} = 0 V, | _ | 1300 | _ | ns | | Reverse recovery charge | Q _{rr} | dI _{DR} /dt = 100 A/μs | _ | 16 | _ | μС | # Marking