

2SK4110

Switching Regulator Applications

Low drain-source ON resistance: R_{DS} (ON) = 0.9 Ω (typ.)

High forward transfer admittance: |Yfs| = 5.0 S (typ.)

Low leakage current: I_{DSS} = 100 μA (V_{DS} = 600 V)

• Enhancement mode: V_{th} = 2.0 to 4.0 V (V_{DS} = 10 V, I_D = 1 mA)

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	600	V	
Drain-gate voltage (F	$R_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	600	V	
Gate-source voltage		V_{GSS}	±30	V	
Drain current	DC (Note 1)	I _D	6	А	
	Pulse (t = 1 ms) (Note 1)	I _{DP}	24		
Drain power dissipati	on (Tc = 25°C)	P _D	40	W	
Single pulse avalance	he energy (Note 2)	E _{AS}	345	mJ	
Avalanche current		I _{AR}	6	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	4	mJ	
Channel temperature	•	T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55 to 150	°C	

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.125	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: $V_{DD} = 90 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}(\text{initial})$, L = 16.8 mH, $I_{AR} = 6 \text{ A}$, $R_G = 25 \Omega$

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device. Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Char	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cui	rrent	I _{GSS}	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Gate-source brea	akdown voltage	V (BR) GSS	$I_G = \pm 10 \ \mu A, \ V_{DS} = 0 \ V$	±30	_	_	V
Drain cut-off curr	ent	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V	_	_	100	μА
Drain-source bre	akdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	600	_		V
Gate threshold v	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source ON	resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 3 A		0.9	1.25	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 3 A	1.2	5.0		S
Input capacitance	е	C _{iss}			1050	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		10	_	pF
Output capacitance		C _{oss}			110		
Switching time	Rise time	t _r	V_{GS} $V_{DD} \simeq 200 \text{ V}$ $V_{DD} \simeq 200 \text{ V}$	_	20	_	
	Turn-on time	t _{on}		_	40	_	
	Fall time	t _f		_	35	_	ns
	Turn-off time	t _{off}	Duty \leq 1%, $t_W = 10 \mu s$	_	130	_	
Total gate charge		Qg		_	28	_	
Gate-source charge		Q _{gs}	$V_{DD} \simeq 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$	_	16	_	nC
Gate-drain charge		Q _{gd}		_	12	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I_{DR}	_	_	_	6	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	24	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 6 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	$I_{DR} = 6 \text{ A}, V_{GS} = 0 \text{ V},$	_	1000	_	ns
Reverse recovery charge	Q _{rr}	dl _{DR} /dt = 100 A/μs	_	7.0	_	μС

Marking

