

2SK4106

Unit: mm

Low drain-source ON resistance: R_{DS} (ON) = 0.4 Ω (typ.)

• High forward transfer admittance: |Y_{fs}| = 8.5 S (typ.)

Low leakage current: I_{DSS} = 100 μA (max) (V_{DS} = 500 V)

• Enhancement mode: $V_{th} = 2.0 \text{ to } 4.0 \text{ V } (V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA})$

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	500	V	
Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)		V_{DGR}	500	V	
Gate-source voltage		V_{GSS}	±30	V	
Drain current	DC (Note 1)	I _D	12	А	
	Pulse (t = 1 ms) (Note 1)	I _{DP}	48		
Drain power dissipation (Tc = 25°C)		P _D	45	W	
Single pulse avalanche energy (Note 2)		E _{AS}	364	mJ	
Avalanche current		I _{AR}	12	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	4	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55 to 150	°C	

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	2.78	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: $V_{DD} = 90 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}(\text{initial})$, L = 4.3 mH, $I_{AR} = 12 \text{ A}$, $R_G = 25 \Omega$

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device. Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Chara	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Gate-source brea	akdown voltage	V (BR) GSS	$I_G = \pm 10 \ \mu A, \ V_{DS} = 0 \ V$	±30	_	_	V
Drain cut-off curr	ent	I _{DSS}	V _{DS} = 500 V, V _{GS} = 0 V	_	_	100	μА
Drain-source bre	akdown voltage	V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	500	_	_	V
Gate threshold vo	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source ON	resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 6 A		0.4	0.52	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 6 A	3.5	8.5	_	S
Input capacitance	e	C _{iss}		_	1500	_	
Reverse transfer capacitance		C _{rss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	15	_	pF
Output capacitance		Coss		_	180		
Switching time	Rise time	t _r	$\begin{array}{c c} 10 \text{ V} & \text{I}_D = 6 \text{ A} & \text{V}_{\text{OUT}} \\ VGS & & & & \\ 0 \text{ V} & & & \\ \hline 50 \Omega & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	_	22	_	
	Turn-on time	t _{on}		_	50	_	20
	Fall time	t _f		_	36	_	ns
	Turn-off time	t _{off}	Duty \leq 1%, $t_W = 10 \ \mu s$	_	170	_	
Total gate charge		Qg		_	42	_	
Gate-source charge		Qgs	$V_{DD} \simeq 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$	_	23	_	nC
Gate-drain charge		Q _{gd}			19	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	12	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	48	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 12 A, V _{GS} = 0 V	_	_	-1.7	٧
Reverse recovery time	t _{rr}	$I_{DR} = 12 \text{ A}, V_{GS} = 0 \text{ V},$	_	1200	_	ns
Reverse recovery charge	Q _{rr}	dl _{DR} /dt = 100 A/μs		16		μС

Marking

