

2SK3864

PDP Sustain Circuit Applications Switching Regulator Applications

- Low drain-source ON resistance: RDS (ON) = $20 \text{ m}\Omega$ (typ.)
- High forward transfer admittance: $|Y_{fs}| = 75 \text{ S (typ.)}$
- Low leakage current: $I_{DSS} = 100 \,\mu\text{A} \,(\text{max}) \,(V_{DSS} = 120 \,\text{V})$
- Enhancement mode: $V_{th} = 2.0 \sim 4.0 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA})$

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	120	V	
Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)		V_{DGR}	120	V	
Gate-source voltage	DC	V _{GSS}	±20	V	
Drain current	DC (Note 1)	I _D	45	Α	
	Pulse (Note 1)	I _{DP}	180		
Drain power dissipatio	n (Tc = 25°C)	P_{D}	100	W	
Single pulse avalanche energy (Note 2)		E _{AS}	84	mJ	
Avalanche current		I _{AR}	45	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	10	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Weight: 1.5 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit	
Thermal resistance, channel to case	R _{th (ch-c)}	1.25	°C/W	

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: $V_{DD} = 50$ V, $T_{ch} = 25^{\circ}C$ (initial), L = 54 μH , $R_G = 25$ Ω , $I_{AR} = 45$ A

Note 3: Repetitive rating; pulse width limited by maximum channel temperature.

This transistor is an electrostatic-sensitive device. Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Chara	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA
Drain cut-off current		I _{DSS}	V _{DS} = 120 V, V _{GS} = 0 V	_	_	100	μА
Drain-source breakdown voltage		V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	120	_	_	V
Gate threshold voltage		V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source ON resistance		R _{DS} (ON)	V _{GS} = 10 V, I _D = 23 A	_	20	25	mΩ
Forward transfer	rward transfer admittance $ Y_{fs} $ $V_{DS} = 10 \text{ V}, I_D = 23 \text{ A}$		V _{DS} = 10 V, I _D = 23 A	38	75	_	S
Input capacitance	:	C _{iss}		_	4900	_	
Reverse transfer capacitance		C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	210	_	pF
Output capacitance		C _{oss}		_	480	_	
Switching time	Rise time	t _r	$V_{GS} = 23 \text{ A} \qquad \text{Output}$ $V_{GS} = 23 \text{ A} \qquad \text{Output}$ $V_{DD} = 60 \text{ V}$ $V_{DD} = 60 \text{ V}$ $V_{DD} = 60 \text{ V}$	_	7		
	Turn-on time	t _{on}		_	27	_	nc
	Fall time	t _f		_	9	_	ns
	Turn-off time	t _{off}		_	74		
Total gate charge		Qg		_	83		
Gate-source charge		Q _{gs}	$V_{DD} \simeq 96 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 45 \text{ A}$	_	23	_	nC
Gate-drain charge		Q _{gd}		_	60		

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	45	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	180	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 45 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	$I_{DR} = 45 \text{ A}, V_{GS} = 0 \text{ V},$	_	75	_	ns
Reverse recovery charge	Q _{rr}	dI _{DR} /dt = 50 A/μs	_	104	_	μС

Marking

