2SK3316

Switching Regulator Applications

Unit: mm

• Fast reverse recovery time $t_{rr} = 60 \text{ ns (typ.)}$

• Built-in high-speed free-wheeling diode

• Low drain—source ON resistance : $RDS (ON) = 1.6 \Omega (typ.)$ • High forward transfer admittance : $|Y_{fs}| = 3.8 S (typ.)$ • Low leakage current : $IDSS = 100 \mu A (max) (VDS = 500 V)$

• Enhancement mode $V_{th} = 2.0 \sim 4.0 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA}$

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	500	V	
Drain-gate voltage (Ro	_{SS} = 20 kΩ)	V_{DGR}	500	V	
Gate-source voltage		V_{GSS}	±30	V	
Drain current	DC (Note 1)	ID	5	Α	
	Pulse (Note 1)	I_{DP}	20	Α	
Drain power dissipation	n (Tc = 25°C)	P_{D}	35	W	
Single pulse avalanche	e energy (Note 2)	E _{AS}	180	mJ	
Avalanche current		I _{AR}	5	Α	
Repetitive avalanche e	nergy (Note 3)	E _{AR}	3.5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.57	°C / W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C / W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 12.2 mH, R_G = 25 Ω , I_{AR} = 5 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device.

Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	ırrent	I _{GSS}	V _{GS} = ±25 V, V _{DS} = 0 V	_	_	±10	μΑ
Gate-source bre	eakdown voltage	V (BR) GSS	I _G = ±100 μA, V _{DS} = 0 V	±30	_	_	V
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 500 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	500	_	_	V
Gate threshold v	oltage/	V_{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source O	N resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 2.5 A	_	1.6	1.8	Ω
Forward transfer	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 2.5 A	2.5	3.8	_	S
Input capacitano	e	C _{iss}			780	_	
Reverse transfe	se transfer capacitance C_{rss} $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	-	60	_	pF
Output capacitance		Coss]		200	_	
Switching time	Rise time	tr	V_{GS} V_{OUT} V_{GS} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT}	_	12	_	ns
	Turn-on time	t _{on}		_	25	_	
	Fall time	t _f		_	15	_	
	Turn-off time	t _{off}	$V_{DD} \stackrel{\Leftarrow}{=} 225V$ Duty $\leq 1\%$, $t_w = 10 \mu s$	_	60	_	
Total gate charge (Gate-source plus gate-drain)		Qg	V _{DD} ≈ 400 V, V _{GS} = 10 V, I _D = 5 A		17	_	nC
Gate-source charge		Q _{gs}		_	11		
Gate-drain ("miller") charge		Q _{gd}			6	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	5	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	20	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 5 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	$I_{DR} = 5 \text{ A}, V_{GS} = 0 \text{ V}, dI_{DR} / dt = 100 \text{ A} / \mu \text{s}$	ı	60	1	ns
Reverse recovery charge	Q _{rr}			0.1	_	μC

Marking

