2SK3313 # Chopper Regulator and DC-DC Converter Applications Motor Drive Applications • Fast reverse recovery time : t_{rr} = 90 ns (typ.) • Built-in high-speed free-wheeling diode • Low drain-source ON-resistance : $R_{DS (ON)} = 0.5 \Omega (typ.)$ • High forward transfer admittance : $|Y_{fs}| = 8.5 S (typ.)$ • Low leakage current : $I_{DSS} = 100 \mu A (max) (V_{DS} = 500 V)$ • Enhancement mode : V_{th} = 2.0 to 4.0 V (V_{DS} = 10 V, I_D = 1 mA) #### Absolute Maximum Ratings (Ta = 25°C) | Characteris | stics | Symbol | Rating | Unit | | |-------------------------|------------------------|------------------|------------|------|--| | Drain-source voltage | | V_{DSS} | 500 | V | | | Drain-gate voltage (Ro | _{SS} = 20 kΩ) | V_{DGR} | 500 | ٧ | | | Gate-source voltage | | V_{GSS} | ±30 | ٧ | | | Drain current | DC (Note 1) | ΙD | 12 | Α | | | | Pulse (Note 1) | I_{DP} | 48 | Α | | | Drain power dissipation | n (Tc = 25°C) | P_{D} | 40 | W | | | Single pulse avalanche | e energy
(Note 2) | E _{AS} | 324 | mJ | | | Avalanche current | | I _{AR} | 12 | Α | | | Repetitive avalanche e | nergy (Note 3) | E _{AR} | 4.0 | mJ | | | Channel temperature | | T _{ch} | 150 | °C | | | Storage temperature ra | ange | T _{stg} | -55 to 150 | °C | | Weight: 1.9 g (typ.) Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). #### **Thermal Characteristics** | Characteristics | Symbol | Max | Unit | |--|------------------------|-------|--------| | Thermal resistance, channel to case | R _{th (ch-c)} | 3.125 | °C / W | | Thermal resistance, channel to ambient | R _{th (ch-a)} | 62.5 | °C / W | Note 1: Ensure that the channel temperature does not exceed 150°C. Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 3.83 mH, R_G = 25 Ω , I_{AR} = 12 A Note 3: Repetitive rating: Pulse width limited by maximum channel temperature This transistor is an electrostatic-sensitive device. Please handle with caution. ## **Electrical Characteristics (Ta = 25°C)** | Charac | cteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |---|-----------------|----------------------|---|-----|------|------|-------| | Gate leakage cu | irrent | I _{GSS} | V _{GS} = ±25 V, V _{DS} = 0 V | _ | _ | ±10 | μΑ | | Gate-source bre | eakdown voltage | V (BR) GSS | I _G = ±100 μA, V _{DS} = 0 V | ±30 | _ | _ | V | | Drain cut-off cu | rrent | I _{DSS} | V _{DS} = 500 V, V _{GS} = 0 V | _ | _ | 100 | μA | | Drain-source br | eakdown voltage | V (BR) DSS | I _D = 10 mA, V _{GS} = 0 V | 500 | _ | _ | V | | Gate threshold v | voltage | V_{th} | V _{DS} = 10 V, I _D = 1 mA | 2.0 | _ | 4.0 | V | | Drain-source O | N-resistance | R _{DS} (ON) | V _{GS} = 10 V, I _D = 6 A | | 0.5 | 0.62 | Ω | | Forward transfer | r admittance | Y _{fs} | V _{DS} = 10 V, I _D = 6 A | 3.0 | 8.5 | _ | S | | Input capacitano | e | C _{iss} | | | 2040 | _ | | | Reverse transfe | r capacitance | C _{rss} | V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz | _ | 210 | _ | pF | | Output capacitance | | Coss |] | _ | 630 | _ | | | Switching time | Rise time | tr | V_{GS} V_{OV} V_{OUT} V_{OUT} V_{DD} V_{OUT} V_{DD} | _ | 22 | _ | | | | Turn-on time | t _{on} | | _ | 58 | _ | | | | Fall time | t _f | | _ | 36 | _ | ns ns | | | Turn-off time | t _{off} | $\begin{array}{c} \text{VDD} = 200 \text{ V} \\ \text{Duty} \leq 1\%, \text{ t}_{\text{W}} = 10 \mu \text{s} \end{array}$ | _ | 180 | _ | | | Total gate charge (Gate-source plus gate-drain) | | Qg | | | 45 | _ | | | Gate-source charge | | Q _{gs} | $V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$ | | 25 | | nC | | Gate-drain ("miller") charge | | Q _{gd} | | | 20 | _ | | ## Source-Drain Ratings and Characteristics (Ta = 25°C) | Characteristics | Symbol | Test Condition | Min | Тур. | Max | Unit | |---|------------------|---|-----|------|------|------| | Continuous drain reverse current (Note 1) | I _{DR} | _ | _ | _ | 12 | Α | | Pulse drain reverse current (Note 1) | I _{DRP} | - | _ | _ | 48 | Α | | Forward voltage (diode) | V _{DSF} | I _{DR} = 12 A, V _{GS} = 0 V | _ | _ | -1.7 | V | | Reverse recovery time | t _{rr} | I _{DR} = 12 A, V _{GS} = 0 V | ı | 90 | 160 | ns | | Reverse recovery charge | Q _{rr} | dI _{DR} / dt = 100 A / μs | _ | 0.25 | _ | μC | ## Marking