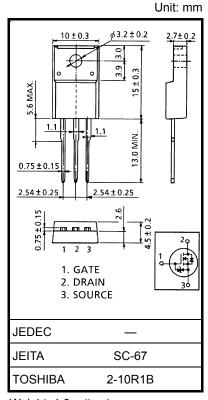


2SK3313

Chopper Regulator and DC-DC Converter Applications Motor Drive Applications

• Fast reverse recovery time : t_{rr} = 90 ns (typ.)


• Built-in high-speed free-wheeling diode

• Low drain-source ON-resistance : $R_{DS (ON)} = 0.5 \Omega (typ.)$ • High forward transfer admittance : $|Y_{fs}| = 8.5 S (typ.)$ • Low leakage current : $I_{DSS} = 100 \mu A (max) (V_{DS} = 500 V)$

• Enhancement mode : V_{th} = 2.0 to 4.0 V (V_{DS} = 10 V, I_D = 1 mA)

Absolute Maximum Ratings (Ta = 25°C)

Characteris	stics	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	500	V	
Drain-gate voltage (Ro	_{SS} = 20 kΩ)	V_{DGR}	500	٧	
Gate-source voltage		V_{GSS}	±30	٧	
Drain current	DC (Note 1)	ΙD	12	Α	
	Pulse (Note 1)	I_{DP}	48	Α	
Drain power dissipation	n (Tc = 25°C)	P_{D}	40	W	
Single pulse avalanche	e energy (Note 2)	E _{AS}	324	mJ	
Avalanche current		I _{AR}	12	Α	
Repetitive avalanche e	nergy (Note 3)	E _{AR}	4.0	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature ra	ange	T _{stg}	-55 to 150	°C	

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.125	°C / W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C / W

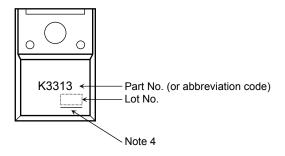
Note 1: Ensure that the channel temperature does not exceed 150°C.

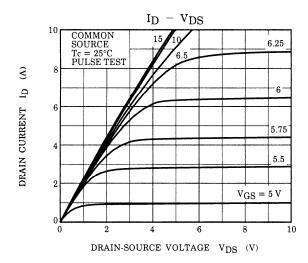
Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 3.83 mH, R_G = 25 Ω , I_{AR} = 12 A

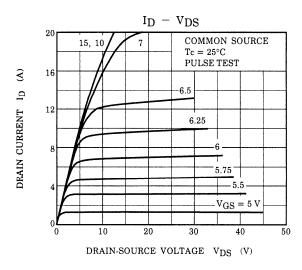
Note 3: Repetitive rating: Pulse width limited by maximum channel temperature

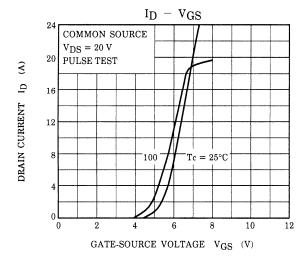
This transistor is an electrostatic-sensitive device.

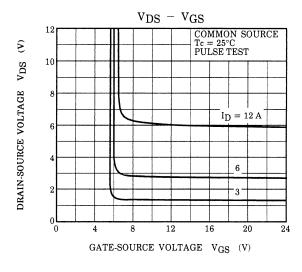
Please handle with caution.


Electrical Characteristics (Ta = 25°C)


Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	irrent	I _{GSS}	V _{GS} = ±25 V, V _{DS} = 0 V	_	_	±10	μΑ
Gate-source bre	eakdown voltage	V (BR) GSS	I _G = ±100 μA, V _{DS} = 0 V	±30	_	_	V
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 500 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	500	_	_	V
Gate threshold v	voltage	V_{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source O	N-resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 6 A		0.5	0.62	Ω
Forward transfer	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 6 A	3.0	8.5	_	S
Input capacitano	e	C _{iss}			2040	_	
Reverse transfe	r capacitance	C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	210	_	pF
Output capacitance		Coss]	_	630	_	
Switching time	Rise time	tr	V_{GS} V_{OV} V_{OUT} V_{OUT} V_{DD} V_{OUT} V_{DD}	_	22	_	
	Turn-on time	t _{on}		_	58	_	
	Fall time	t _f		_	36	_	ns ns
	Turn-off time	t _{off}	$\begin{array}{c} \text{VDD} = 200 \text{ V} \\ \text{Duty} \leq 1\%, \text{ t}_{\text{W}} = 10 \mu \text{s} \end{array}$	_	180	_	
Total gate charge (Gate-source plus gate-drain)		Qg			45	_	
Gate-source charge		Q _{gs}	$V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$		25		nC
Gate-drain ("miller") charge		Q _{gd}			20	_	


Source-Drain Ratings and Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	12	Α
Pulse drain reverse current (Note 1)	I _{DRP}	-	_	_	48	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 12 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	I _{DR} = 12 A, V _{GS} = 0 V	ı	90	160	ns
Reverse recovery charge	Q _{rr}	dI _{DR} / dt = 100 A / μs	_	0.25	_	μC


Marking

