

# 2SK3126

### **Switching Regulator Applications**

Unit: mm

 $\begin{array}{ll} \bullet & Low\ drain-source\ ON\ resistance & : RDS\ (ON) = 0.48\ \Omega\ (typ.) \\ \bullet & High\ forward\ transfer\ admittance & : |Y_{fs}| = 7.5\ S\ (typ.) \\ \bullet & Low\ leakage\ current & : IDSS = 100\ \mu A\ (max)\ (V_{DS} = 450\ V) \\ \bullet & Enhancement\ mode & : V_{th} = 2.4 {\sim} 3.4\ V\ (V_{DS} = 10\ V,\ ID = 1\ mA) \end{array}$ 

### **Absolute Maximum Ratings (Ta = 25°C)**

| Characteristics                              |                | Symbol           | Rating  | Unit |  |
|----------------------------------------------|----------------|------------------|---------|------|--|
| Drain-source voltage                         |                | $V_{DSS}$        | 450     | V    |  |
| Drain-gate voltage (R <sub>GS</sub> = 20 kΩ) |                | $V_{DGR}$        | 450     | V    |  |
| Gate-source voltage                          |                | V <sub>GSS</sub> | ±30     | V    |  |
| Drain current                                | DC (Note 1)    | I <sub>D</sub>   | 10      | Α    |  |
|                                              | Pulse (Note 1) | I <sub>DP</sub>  | 40      | Α    |  |
| Drain power dissipation                      | n (Tc = 25°C)  | P <sub>D</sub>   | 40      | W    |  |
| Single pulse avalanche energy (Note 2)       |                | E <sub>AS</sub>  | 222     | mJ   |  |
| Avalanche current                            |                | I <sub>AR</sub>  | 10      | Α    |  |
| Repetitive avalanche energy (Note 3)         |                | E <sub>AR</sub>  | 4       | mJ   |  |
| Channel temperature                          |                | T <sub>ch</sub>  | 150     | °C   |  |
| Storage temperature range                    |                | T <sub>stg</sub> | -55~150 | °C   |  |



Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

#### **Thermal Characteristics**

| Characteristics                     | Symbol                 | Max   | Unit   |
|-------------------------------------|------------------------|-------|--------|
| Thermal reverse, channel to case    | R <sub>th (ch-c)</sub> | 3.125 | °C / W |
| Thermal reverse, channel to ambient | R <sub>th (ch-a)</sub> | 62.5  | °C / W |

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2:  $V_{DD}$  = 90 V,  $T_{ch}$  = 25°C (initial), L = 3.7 mH,  $R_G$  = 25  $\Omega$ ,  $I_{AR}$  = 10 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device.

Please handle with caution.

## Electrical Characteristics (Ta = 25°C)

| Charac                               | cteristics      | Symbol               | Test Condition                                                            | Min | Тур. | Max  | Unit |
|--------------------------------------|-----------------|----------------------|---------------------------------------------------------------------------|-----|------|------|------|
| Gate leakage cu                      | ırrent          | I <sub>GSS</sub>     | V <sub>GS</sub> = ±25 V, V <sub>DS</sub> = 0 V                            | _   | _    | ±10  | μA   |
| Gate-source bro                      | eakdown voltage | V (BR) GSS           | I <sub>G</sub> = ±10 μA, V <sub>DS</sub> = 0 V                            | ±30 | _    | _    | V    |
| Drain cut-off cu                     | rrent           | I <sub>DSS</sub>     | V <sub>DS</sub> = 450 V, V <sub>GS</sub> = 0 V                            | _   | _    | 100  | μA   |
| Drain-source br                      | eakdown voltage | V (BR) DSS           | I <sub>D</sub> = 10 mA, V <sub>GS</sub> = 0 V                             | 450 | _    | _    | V    |
| Gate threshold v                     | /oltage         | $V_{th}$             | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 mA                             | 2.4 | _    | 3.4  | V    |
| Drain-source O                       | N resistance    | R <sub>DS (ON)</sub> | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 5 A                              | _   | 0.48 | 0.65 | Ω    |
| Forward transfe                      | r admittance    | Y <sub>fs</sub>      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 5 A                              | 3.5 | 7.5  | _    | S    |
| Input capacitano                     | ce              | C <sub>iss</sub>     |                                                                           | _   | 1400 | _    |      |
| Reverse transfe                      | r capacitance   | C <sub>rss</sub>     | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0 V, f = 1 MHz                  | _   | 240  | _    | pF   |
| Output capacitance                   |                 | Coss                 |                                                                           | _   | 590  | _    |      |
| Switching time                       | Rise time       | t <sub>r</sub>       | $V_{GS} = \pm 200V$ $V_{DD} = \pm 200V$                                   | _   | 35   | _    | ns   |
|                                      | Turn-on time    | t <sub>on</sub>      |                                                                           | _   | 50   | _    |      |
|                                      | Fall time       | t <sub>f</sub>       |                                                                           | _   | 80   | _    |      |
|                                      | Turn-off time   | t <sub>off</sub>     | Duty $\leq 1\%$ , $t_{\mathbf{w}} = 10 \mu s$                             | _   | 260  | _    |      |
| Total gate charg<br>plus gate-drain) |                 | Qg                   |                                                                           |     | 35   | _    |      |
| Gate-source charge                   |                 | Q <sub>gs</sub>      | $V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ |     | 19   | _    | nC   |
| Gate-drain ("miller") charge         |                 | Q <sub>gd</sub>      |                                                                           | _   | 16   | _    |      |

# Source-Drain Ratings and Characteristics (Ta = 25°C)

| Characteristics                           | Symbol           | Test Condition                                | Min | Тур. | Max  | Unit |
|-------------------------------------------|------------------|-----------------------------------------------|-----|------|------|------|
| Continuous drain reverse current (Note 1) | I <sub>DR</sub>  | _                                             | _   | _    | 10   | Α    |
| Pulse drain reverse current (Note 1)      | I <sub>DRP</sub> | _                                             | _   | _    | 40   | Α    |
| Forward voltage (diode)                   | V <sub>DSF</sub> | I <sub>DR</sub> = 10 A, V <sub>GS</sub> = 0 V | _   | _    | -1.7 | V    |
| Reverse recovery time                     | t <sub>rr</sub>  | I <sub>DR</sub> = 10 A, V <sub>GS</sub> = 0 V |     | 1400 | _    | ns   |
| Reverse recovery charge                   | Qrr              | dl <sub>DR</sub> / dt = 100 A / μs            |     | 14   | _    | μC   |

## Marking

