
2SK3067

Chopper Regulator, DC–DC Converter and Motor Drive Applications

- Low drain-source ON resistance : $R_{DS (ON)} = 4.2 \Omega$ (typ.)
 - High forward transfer admittance $|Y_{fs}| = 1.7 \text{ S} (typ.)$
 - Low leakage current : $I_{DSS} = 100 \ \mu A \ (max) \ (V_{DS} = 600 \ V)$
- Enhancement mode : V_{th} = 2.0 to 4.0 V (V_{DS} = 10 V, I_D = 1 mA)

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V _{DSS}	600	V	
Drain-gate voltage	(R _{GS} = 20 kΩ)	V _{DGR}	600	V	
Gate-source voltage	ge	V _{GSS}	±30	V	
Drain current	DC (Note 1)	۱ _D	2	А	
	Pulse (t = 1 ms) (Note 1)	I _{DP}	5	A	
	Pulse (t = 100 µs) (Note 1)	I _{DP}	8	A	
Drain power dissipa	ation (Tc = 25°C)	PD	25	W	
Single pulse avalanche energy (Note 2)		E _{AS}	93	mJ	
Avalanche current		I _{AR}	2	А	
Repetitive avalancl	ne energy (Note 3)	E _{AR}	2.5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	−55 to 150	°C	

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Electrical Characteristics (Ta = 25°C)

Characteristics	Symbol	Мах	Unit
Thermal reverse, channel to case	R _{th (ch−c)}	5.0	°C / W
Thermal reverse, channel to ambient	R _{th (ch−a)}	62.5	°C / W

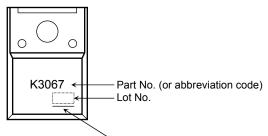
Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 41 mH, R_G = 25 Ω , I_{AR} = 2 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature.

This transistor is an electrostatic-sensitive device. Please handle with caution.

Unit: mm


Electrical Characteristics (Ta = 25°C)

Charao	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	urrent	I _{GSS}	V_{GS} = ±25 V, V_{DS} = 0 V	_	—	±10	μA
Gate-source bre	eakdown voltage	V _(BR) GSS	I _G = ±10 μA, V _{DS} = 0 V	±30	_	_	V
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br	reakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	600	_	_	V
Gate threshold v	voltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source O	N resistance	R _{DS (ON)}	V _{GS} = 10 V, I _D = 1 A	_	4.2	5.0	Ω
Forward transfe	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 1 A	0.8	1.7	_	S
Input capacitance		C _{iss}		_	380	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	40	_	pF
Output capacitance		Coss			120	_	
Switching time	Rise time	tr	$V_{GS} \stackrel{10V}{_{0V}} \prod_{OV\\ OC\\ BC\\ BC\\ BC\\ BC\\ BC\\ BC\\ BC\\ BC\\ BC\\ B$	_	15	_	ns
	Turn-on time	t _{on}		_	25	_	
	Fall time	t _f		_	20	_	
	Turn-off time	t _{off}	Duty $\leq 1\%$, t _w =10µs	_	80	_	
Total gate charge (Gate-source plus gate-drain)		Qg		_	9	_	
Gate-source charge		Q _{gs}	V _{DD} ≈ 480 V, V _{GS} = 10 V, I _D = 2 A		5	_	nC
Gate-drain ("miller") charge		Q _{gd}			4		

Source–Drain Ratings and Characteristics (Tc = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current(Note 1)	I _{DR}	—	_	_	2	А
Pulse drain reverse current (Note 1)	I _{DRP}	t = 1 ms	-	_	5	А
Pulse drain reverse current (Note 1)	I _{DRP}	t = 100 µs	-	_	8	А
Forward voltage (diode)	V _{DSF}	I _{DR} = 2 A, V _{GS} = 0 V	-	_	-1.5	V
Reverse recovery time	t _{rr}	I _{DR} = 2 A, V _{GS} = 0 V dI _{DR} / dt = 100 A / μs		1000		ns
Reverse recovery charge	Q _{rr}		_	5.0	_	μC

Marking

Note 4