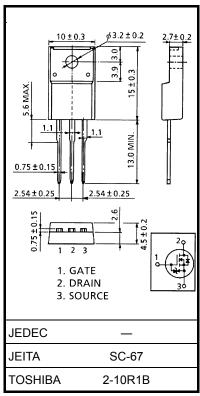


2SK2965

Switching Regulator, DC-DC Converter and Motor Drive Applications

• Low drain–source ON resistance : RDS (ON) = 0.15 Ω (typ.)


• High forward transfer admittance $: |Y_{fs}| = 10 \text{ S (typ.)}$

• Low leakage current $: I_{DSS} = 100 \mu A \text{ (max) (V}_{DS} = 200 \text{ V)}$

• Enhancement mode : $V_{th} = 1.5 \sim 3.5 \text{ V (VDS} = 10 \text{ V, ID} = 1 \text{ mA)}$

Absolute Maximum Ratings (Ta = 25°C)

Characteris	stics	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	200	V	
Drain–gate voltage (R _{GS} = 20 kΩ)		V_{DGR}	200	V	
Gate-source voltage		V_{GSS}	±20	V	
Drain current	DC (Note 1)	ΙD	11	Α	
	Pulse (Note 1)	I _{DP}	33	Α	
Drain power dissipation	n (Tc = 25°C)	P_{D}	35	W	
Single pulse avalanche	e energy (Note 2)	E _{AS}	115	mJ	
Avalanche current		I _{AR}	11	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	3.5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Unit: mm

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.57	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

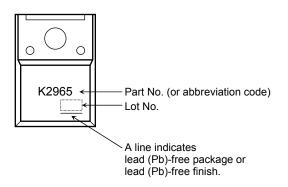
Note 1: Ensure that the channel temperature does not exceed 150°C.

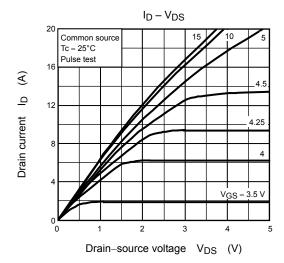
Note 2: $V_{DD} = 50 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 1.53 mH, $R_{G} = 25 \Omega$, $I_{AR} = 11 \text{ A}$

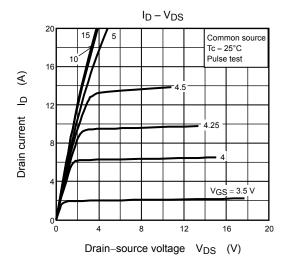
Note 3: Repetitive rating: pulse width limited by maximum channel temperature.

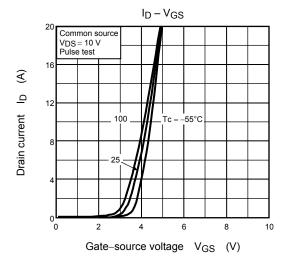
This transistor is an electrostatic-sensitive device.

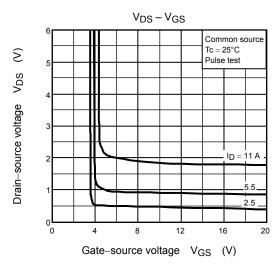
Please handle with caution.


Electrical Characteristics (Ta = 25°C)


Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	ırrent	I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	_	±10	μA
Drain cut-off cut	rrent	I _{DSS}	V _{DS} = 200 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	200	_	_	V
Gate threshold v	/oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	1.5	_	3.5	V
Drain-source O	N resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 5.5 A	_	0.15	0.26	Ω
Forward transfer	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 5.5 A	5.0	10	_	S
Input capacitano	e	C _{iss}		_	1200	_	
Reverse transfe	r capacitance	C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	100	_	pF
Output capacitance		Coss	1	_	290	_	
T Switching time F	Rise time	t _r	V_{GS} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT}	_	15	_	ns
	Turn-on time	t _{on}		_	25	_	
	Fall time	t _f		_	10	_	
	Turn-off time	t _{off}	Duty $\leq 1\%$, $t_{\rm W} = 10\mu s$	_	75	_	
Total gate charge (gate–source plus gate–drain)		Qg	V _{DD} ≈ 100 V, V _{GS} = 10 V, I _D = 10 A		30	_	nC
Gate-source charge		Q _{gs}			20	_	
Gate-drain ("miller") Charge		Q _{gd}			10	_	


Source-Drain Ratings and Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	-	_	11	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	33	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 11 A, V _{GS} = 0 V	_	_	-2.0	V
Reverse recovery time	t _{rr}	I _{DR} = 11 A, V _{GS} = 0 V, I _{DR} / dt = 100 A / μs	ı	175	_	ns
Reverse recovery charge	Qrr		_	1.3	_	μC


Marking

