

2SK2862

DC-DC Converter, Relay Drive and Motor Drive Applications

• Low drain–source ON resistance : RDS (ON) = 2.9 Ω (typ.)

• High forward transfer admittance : $|Y_{fs}| = 1.7 \text{ S (typ.)}$

• Low leakage current : $I_{DSS} = 100 \mu A \text{ (max) (V}_{DS} = 500 \text{ V)}$

• Enhancement mode : $V_{th} = 2.0 \sim 4.0 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA})$

Absolute Maximum Ratings (Ta = 25°C)

Charac	eteristics	Symbol	Rating	Unit
Drain-source volta	ge	V_{DSS}	500	V
Drain-gate voltage	(R _{GS} = 20 kΩ)	V_{DGR}	500	V
Gate-source voltage	ge	V _{GSS}	±30	V
Drain current	DC (Note 1)	I _D	3	А
	Pulse (t = 1 ms) (Note 1)	I _{DP}	5	А
	Pulse (t = 100 µs) (Note 1)	I _{DP}	12	А
Drain power dissipa	ation (Tc = 25°C)	P _D	25	W
Single pulse avalar	nche energy (Note 2)	E _{AS}	112	mJ
Avalanche current		I _{AR}	2	Α
Repetitive avalanch	he energy (Note 3)	E _{AR}	2.5	mJ
Channel temperatu	ire	T _{ch}	150	°C
Storage temperatu	re range	T _{stg}	-55~150	°C

Unit: mm

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	5.0	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 90 V, starting T_{ch} = 25°C, L = 48.4 mH, R_{G} = 25 Ω , I_{AR} = 2 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device.

Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	irrent	I _{GSS}	V _{GS} = ±25 V, V _{DS} = 0 V	_	_	±10	μA
Gate-source bre	eakdown voltage	V (BR) GSS	I _G = ±10 μA, V _{DS} = 0 V	±30	_	_	V
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 500 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	500	_	_	V
Gate threshold v	oltage	V_{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source O	N resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 1 A	_	2.9	3.2	Ω
Forward transfer	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 1 A	0.8	1.7	_	S
Input capacitano	e	C _{iss}		_	380	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	-	40	_	pF
Output capacitance		Coss		-	120	_	
Switching time	Rise time	t _r	V_{GS} V_{OUT} V_{OUT} V_{DD} V_{DD}	_	15	_	- ns
	Turn-on time	t _{on}		ı	25	_	
	Fall time	t _f		l	20		
	Turn-off time	t _{off}	Duty $\leq 1\%$, $t_{\rm W} = 10 \mu {\rm s}$		80	_	
Total gate charge (gate–source plus gate–drain)		Q_{g}		_	9	_	
Gate-source charge		Q _{gs}	$V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2 \text{ A}$		5	_	nC
Gate-drain ("miller") Charge		Q _{gd}			4	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	3	Α
Pulse drain reverse current (Note 1)	I _{DRP}	t = 1 ms	_	_	5	Α
	I _{DRP}	t = 100 μs	_	-	12	Α
Forward voltage (diode)	V_{DSF}	I _{DR} = 2 A, V _{GS} = 0 V	_	-	-1.5	V
Reverse recovery time	t _{rr}	I _{DR} = 2 A, V _{GS} = 0 V	_	1000	-	ns
Reverse recovery charge	Q _{rr}	dI _{DR} / dt = 100 A / μs	_	3.5	_	μC

Marking

