

2SK2842

Chopper Regulator, DC-DC Converter and Motor Drive Applications

• Low drain—source ON resistance : RDS (ON) = 0.4Ω (typ.)

• High forward transfer admittance $: |Y_{fs}| = 9.0 \text{ S (typ.)}$

• Low leakage current $: I_{DSS} = 100 \mu A \text{ (max) (V}_{DS} = 500 \text{ V)}$

• Enhancement mode : $V_{th} = 2.0 \sim 4.0 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA})$

Absolute Maximum Ratings (Ta = 25°C)

Characteri	stics	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	500	V	
Drain-gate voltage (R _{GS} = 20 kΩ)		V_{DGR}	500	V	
Gate-source voltage		V_{GSS}	±30	V	
Drain current	DC (Note 1)	I _D	12	Α	
	Pulse (Note 1)	I _{DP}	48	Α	
Drain power dissipatio	n (Tc = 25°C)	P_{D}	40	W	
Single pulse avalanche	e energy (Note 2)	E _{AS}	364	mJ	
Avalanche current		I _{AR}	12	Α	
Repetitive avalanche energy (Note 3)		E _{AR}	4.0	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Unit: mm

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.125	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 4.3 mH, R_G = 25 Ω , I_{AR} = 12 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature.

This transistor is an electrostatic-sensitive device.

Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	ırrent	I _{GSS}	V _{GS} = ±25 V, V _{DS} = 0 V	_	_	±10	μΑ
Gate-source bre	eakdown voltage	V (BR) GSS	I _G = ±10 μA, V _{DS} = 0 V	±30	_	_	V
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 500 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br voltage	reakdown	V _{(BR) DSS}	I _D = 10 mA, V _{GS} = 0 V	500	_	ı	V
Gate threshold v	/oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source O	N resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 6 A	_	0.4	0.52	Ω
Forward transfer	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 6 A	4.0	9.0	_	S
Input capacitance		C _{iss}		_	2040	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	200	_	pF
Output capacitance		Coss		_	640	_	
Switching time	Rise time	t _r	V _{GS} _{0V} _{OUT} _{R_L} = 33Ω	_	22	_	
	Turn-on time	t _{on}		_	58	_	- ns
	Fall time	t _f		_	36	_	
	Turn-off time	t _{off}	$V_{\mathrm{DD}} = 200 \mathrm{V}$ Duty $\leq 1\%$, $t_{\mathrm{W}} = 10 \mu \mathrm{s}$	_	180	_	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} ≈ 400 V, V _{GS} = 10 V, I _D = 12 A		45	_	nC
Gate-source charge		Q _{gs}		_	25	_	
Gate-drain ("miller") Charge		Q _{gd}		_	20	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	-	_	12	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	48	Α
Forward voltage (diode)	V_{DSF}	I _{DR} = 12 A, V _{GS} = 0 V	_	_	-1.7	V
Reverse recovery time	t _{rr}	I _{DR} = 12 A, V _{GS} = 0 V		1200	_	ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / μs	_	16	_	μC

Marking

