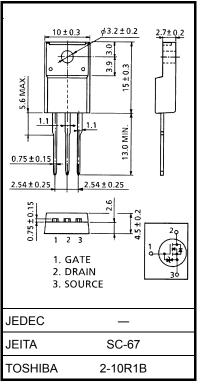


2SK2718


DC-DC Converter and Motor Drive Applications

Unit: mm

 $\begin{array}{ll} \bullet & \text{Low drain-source ON resistance} & : RDS \ (ON) = 5.6 \ \Omega \ (typ.) \\ \bullet & \text{High forward transfer admittance} & : |Y_{fs}| = 2.0 \ S \ (typ.) \\ \bullet & \text{Low leakage current} & : IDSS = 100 \ \mu A \ (max) \ (V_{DS} = 720 \ V) \\ \bullet & \text{Enhancement mode} & : V_{th} = 2.0 \\ \sim 4.0 \ V \ (V_{DS} = 10 \ V, I_{D} = 1 \ mA) \\ \end{array}$

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	900	V	
Drain-gate voltage (Ro	_{SS} = 20 kΩ)	V_{DGR}	900	V	
Gate-source voltage		V _{GSS}	±30	V	
Drain current	DC (Note 1)	I _D	2.5	Α	
	Pulse (Note 1)	I _{DP}	7.5	Α	
Drain power dissipation	n (Tc = 25°C)	P_{D}	40	W	
Single pulse avalanche energy (Note 2)		E _{AS}	216	mJ	
Avalanche current		I _{AR}	2.5	Α	
Repetitive avalanche e	nergy (Note 3)	E _{AR}	4.0	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature ra	ange	T _{stg}	-55~150	°C	

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	3.125	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

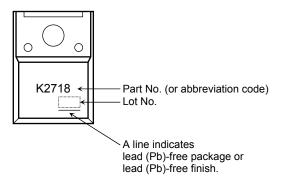
Note 1: Ensure that the channel temperature does not exceed 150°C.

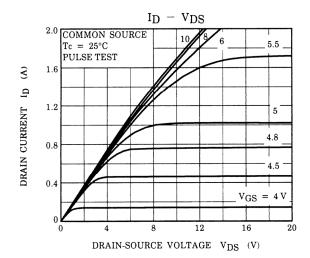
Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 63.4 mH, R_G = 25 Ω , I_{AR} = 2.5 A

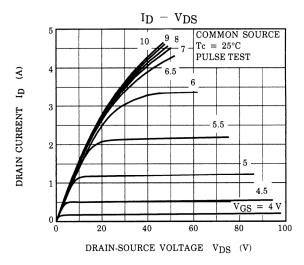
Note 3: Repetitive rating: pulse width limited by maximum channel temperature

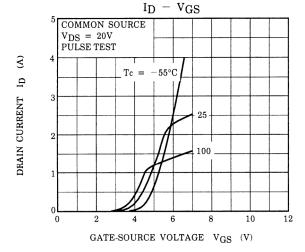
This transistor is an electrostatic-sensitive device.

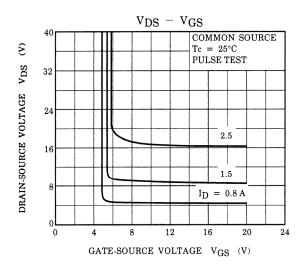
Please handle with caution.


Electrical Characteristics (Ta = 25°C)


Charac	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	rrent	I _{GSS}	V _{GS} = ±25 V, V _{DS} = 0 V	_	_	±10	μΑ
Gate-source bre	eakdown voltage	V (BR) GSS	$I_G = \pm 10 \ \mu A, \ V_{DS} = 0 \ V$	±30	_	_	V
Drain cut-off cur	rrent	I _{DSS}	V _{DS} = 720 V, V _{GS} = 0 V	_	_	100	μΑ
Drain-source br	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	900	_	_	V
Gate threshold v	oltage	V_{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source Ol	N resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 1.5 A	_	5.6	6.4	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 20 V, I _D = 1.5 A	1.0	2.0	_	S
Input capacitano	е	C _{iss}		_	510	_	
Reverse transfer	r capacitance	C _{rss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	_	10	_	pF
Output capacitance		Coss			55	_	
Switching time	Rise time	t _r	V_{GS} V_{OV} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{OUT} V_{DD} V_{OUT}	_	20	_	- ns
	Turn-on time	t _{on}		ı	60	_	
	Fall time	t _f		_	40	_	
	Turn-off time	t _{off}	Duty $\leq 1\%$, $t_{\rm w} = 10 \mu \rm s$	_	115	_	
Total gate charge (gate-source plus gate-drain)		Qg		_	21		
Gate-source charge		Q _{gs}	$V_{DD} \approx 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$		11	_	nC
Gate-drain ("miller") Charge		Q_{gd}			10	_	


Source-Drain Ratings and Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	2.5	Α
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	7.5	Α
Forward voltage (diode)	V _{DSF}	I _{DR} = 2.5 A, V _{GS} = 0 V	_	_	-2.0	V
Reverse recovery time	t _{rr}	I _{DR} = 2.5 A, V _{GS} = 0 V	-	960	1	ns
Reverse recovery charge	Q _{rr}	dl _{DR} / dt = 100 Å / μs	_	5.3	_	μC


Marking

