

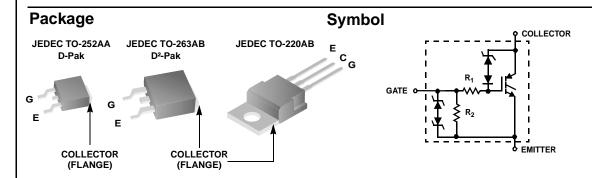
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3

EcoSPARKTM 200mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V2040D3S, ISL9V2040S3S, and ISL9V2040P3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263) and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK™ devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.


Formerly Developmental Type 49444

Applications

- · Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

Features

- Space saving D Pak package available
- SCIS Energy = 200mJ at T_J = 25°C
- Logic Level Gate Drive

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 11.5A$, $L = 3.0$ mHy	200	mJ
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 8.9$ A, $L = 3.0$ mHy	120	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	10	А
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	10	А
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P _D	Power Dissipation Total T _C = 25°C	130	W
	Power Dissipation Derating T _C > 25°C	0.87	W/°C
TJ	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Package Marking	and Ordering	Information
-----------------	--------------	-------------

Device Marking	Device	Package	Tape Width	Quantity
V2040D	ISL9V2040D3S	TO-252AA	16mm	2500
V2040S	ISL9V2040S3S	TO-263AB	24mm	800
V2040P	ISL9V2040P3	TO-220AB	-	-

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Test Con	Min	Тур	Max	Unit	
f State	Characteristics						
BV _{CER}	Collector to Emitter Breakdown Voltage	$I_C = 2\text{mA}, V_{GE} = 0,$ $R_G = 1\text{K}\Omega$ See Fig. 15 $T_J = -40 \text{ to } 150^{\circ}\text{C}$		370	400	430	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = -40$ to 150°C		390	420	450	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_C = 25 ^{\circ} \text{C}$		30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ± 2mA		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	$V_{CER} = 250V$, $R_G = 1K\Omega$, See Fig. 11	$T_{C} = 25^{\circ}C$ $T_{C} = 150^{\circ}C$	1	-	25 1	μA mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24V, See	T _C = 25°C	_	_	1	mA
EUS	Janon Santana Santana	Fig. 11	$T_{\rm C} = 150^{\circ}{\rm C}$	-	-	40	mA
R ₁	Series Gate Resistance		1 0 22 0	-	70	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	26K	Ω
N State	Characteristics Collector to Emitter Saturation Voltage	I _C = 6A,	T _C = 25°C,	_	1.45	1.9	V
CL(GAI)	3	$V_{GE} = 4V$	See Fig. 3				
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 10A,$ $V_{GE} = 4.5V$	T _C = 150°C See Fig. 4	-	1.95	2.3	>
ynamic	Characteristics						
Q _{G(ON)}	Gate Charge	I _C = 10A, V _{CE} = 12V, V _{GE} = 5V, See Fig. 14		1	12	-	nC
$V_{GE(TH)}$	Gate to Emitter Threshold Voltage	$I_C = 1.0$ mA, $V_{CE} = V_{GE}$, See Fig. 10	$T_C = 25^{\circ}C$	1.3	-	2.3	V
			T _C = 150°C	0.75	-	1.8	V
V_{GEP}	Gate to Emitter Plateau Voltage	I _C = 10A, V _{CE} = 12V		-	3.4	-	V
witching	g Characteristics						
t _{d(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14V, R_{L} = 1\Omega,$		-	0.61	-	μs
t _{riseR}	Current Rise Time-Resistive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C		-	2.17	-	μs
$t_{d(OFF)L}$	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300V, L = 500\mu Hy,$		-	3.64	-	μs
t_fL	Current Fall Time-Inductive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12		-	2.36	-	μs
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 3.0mHy, R_G = 1K Ω , V_{GE} = 5V, See Fig. 1 & 2		-	-	200	mJ
nermal (Characteristics						
$R_{\theta JC}$	Thermal Resistance Junction-Case	TO-252, TO-263, TO-220				1.15	°C/V

Typical Performance Curves (Continued)

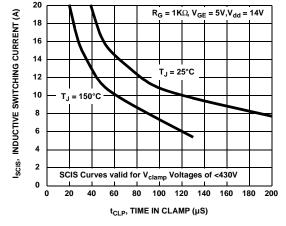


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

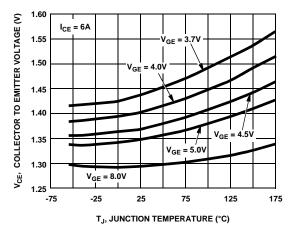


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

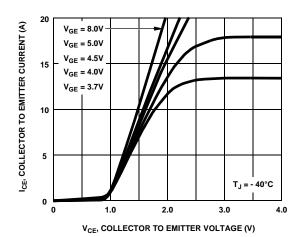


Figure 5. Collector to Emitter On-State Voltage vs Collector Current

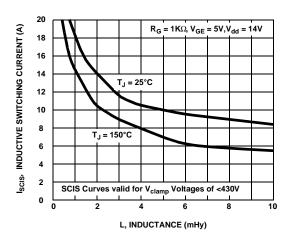


Figure 2. Self Clamped Inductive Switching Current vs Inductance



Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

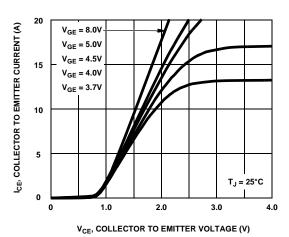


Figure 6. Collector to Emitter On-State Voltage vs Collector Current