Table 1: Main Product Characteristics

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 40 \mathrm{~A}$
$\mathrm{~V}_{\text {RRM }}$	170 V
$\mathrm{~T}_{\mathrm{j}}$	$175^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{F}}(\mathbf{m a x})$	0.74 V

FEATURES AND BENEFITS

- High junction temperature capability
- Low leakage current
- Good trade off between leakage current and forward voltage drop
- Low thermal resistance
- High frequency operation
- Avalanche specification

DESCRIPTION

Dual center tab Schottky rectifier suited for High Frequency Switched Mode Power Supplies.
Packaged in TO-247, this device is intended for use to enhance the reliability of the application.

Table 2: Order Code

Part Number	Marking
STPS80170CW	STPS80170CW

Table 3: Absolute Ratings (limiting values, per diode)

Symbol	Parameter				Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive peak reverse voltage				170	V
$\mathrm{I}_{\text {F(RMS })}$	RMS forward current				80	A
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average forward current	$\mathrm{T}_{\mathrm{c}}=150$		Per diode Per device	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	A
$\mathrm{I}_{\text {FSM }}$	Surge non repetitive forward current			nusoidal	500	A
$\mathrm{P}_{\text {ARM }}$	Repetitive peak avalanche power			$25^{\circ} \mathrm{C}$	38200	W
$\mathrm{T}_{\text {stg }}$	Storage temperature range				-65 to + 175	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum operating junction temperature *				175	${ }^{\circ} \mathrm{C}$
dV/dt	Critical rate of rise of reverse voltage				10000	$\mathrm{V} / \mathrm{\mu s}$

$*: \frac{d P \text { tot }}{d T j}<\frac{1}{R t h(j-a)}$ thermal runaway condition for a diode on its own heatsink

Table 4: Thermal Parameters

Symbol	Parameter		Value	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	Junction to case	Per diode	0.7	
		Total	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}(\mathrm{c})}$		Coupling	0.3	

When the diodes 1 and 2 are used simultaneously:
$\Delta \mathrm{Tj}($ diode 1$)=P\left(\right.$ diode 1) $\times R_{\text {th }(j-c)}($ Per diode $)+P\left(\right.$ diode 2) $\times R_{\text {th }}(\mathrm{c})$

Table 5: Static Electrical Characteristics (per diode)

Symbol	Parameter	Tests conditions		Min.	Typ	Max.	Unit
I_{R} *	Reverse leakage current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$			80	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20	80	mA
V_{F} **	Forward voltage drop	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}$		0.80	0.84	V
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			0.68	0.74	
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=80 \mathrm{~A}$		0.90	0.96	
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			0.80	0.86	

$\begin{array}{ll}\text { Pulse test: } \quad & \quad{ }^{*} \mathrm{tp}=5 \mathrm{~ms}, \delta<2 \% \\ & { }^{* *} \mathrm{tp}=380 \mu \mathrm{~s}, \delta<2 \%\end{array}$
To evaluate the conduction losses use the following equation: $P=0.62 \times I_{F}(A V)+0.003 I_{F}{ }^{2}$ (RMS)

