
STPS20SM120S

Datasheet

120 V power Schottky rectifier

TO-220AB

TO-220FPAB

Features

- High current capability
- Avalanche rated
- Low forward voltage drop
- High frequency operation
- Insulated package TO220FPAB:
 - Insulated voltage: 2000 V_{RMS} sine
- ECOPACK[®]2 compliant

Applications

- Switching diode
- SMPS

•

- DC/DC converter
- LED lighting
- Notebook adapter

Description

This Schottky diode is suited for high frequency switch mode power supply.

Packed in TO-220AB and TO-220FPAB, the STPS20SM120S is optimized for use in notebook, game station and desktop adapters, providing in these applications a good efficiency at both low and high load.

Product status STPS20SM120S

Product summary		
I _{F(AV)}	20 A	
V _{RRM}	120 V	
T _j (max)	150 °C	
V _F (typ)	0.65 V	

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified, anode terminals short circuited)

Symbol	Parameter		Value	Unit
V _{RRM}	Repetitive peak reverse voltage		120	V
I _{F(RMS)}	Forward rms current		50	А
I _{F(AV)}	Average forward current δ = 0.5, square wave		20	Α
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sinusoidal	220	А
P _{ARM}	Repetitive peak avalanche power	t _p = 10 μs, T _j = 125 °C	900	W
T _{stg}	Storage temperature range		-65 to +175	°C
Tj	Maximum operating junction temperature (1)		+150	°C

1. $(dP_{tot'}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameter

Symbol	Parameter		Value	Unit
R _{th(j-c)} J	Junction to case	TO-220AB	1.55	°C/W
		TO-220FPAB	4	0/11

For more information, please refer to the following application note :

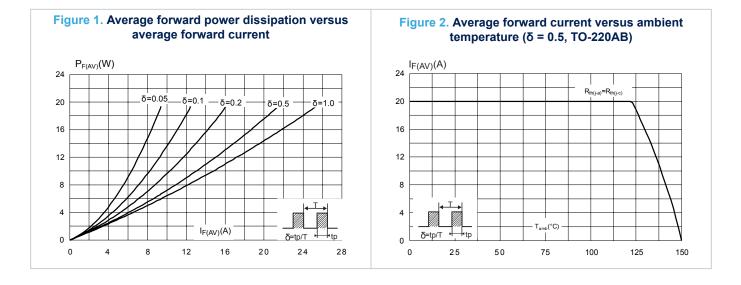
AN5088 : Rectifiers thermal management, handling and mounting recommendations

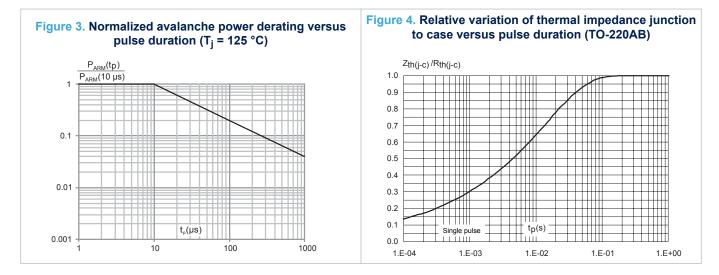
Table 3. Static electrical characteristics (anode terminals short circuited)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾ Reverse leakage current		T _j = 25 °C	V _R = V _{RRM}	-	40	210	μA
	T _j = 125 °C	VR - VRRM	-	15	40	mA	
V _F ⁽²⁾ Forward voltage drop		T _j = 125 °C	I _F = 5 A	-	0.49	0.54	
		T _j = 25 °C	I _F = 10 A	-		0.75	
	T _j = 125 °C	IF = 10 A	-	0.57	0.62	V	
		T _j = 25 °C	I _F = 20 A	-		0.89	
		T _j = 125 °C		-	0.65	0.72	

1. Pulse test: $t_p = 5 ms$, $\delta < 2\%$

2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$


To evaluate the conduction losses, use the following equation:


 $P = 0.56 \text{ x } I_{F(AV)} + 0.008 I_{F}^{2} (RMS)$

For more information, please refer to the following application notes related to the power losses :

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

1.1 Characteristics (curves)

