

100 V power Schottky rectifier

Features

- · High current capability
- Avalanche rated
- · Low forward voltage drop
- · High frequency operation
- ECOPACK[®]2 compliant

Applications

- Switching diode
- SMPS
- DC/DC converter
- LED lighting
- Desktop power supply

Description

This single Schottky rectifier is suited for high frequency switch mode power supply.

Packaged in TO-220AB and I²PAK, the STPS20SM100S is intended to be used in notebook, game station and desktop adaptors, providing in these applications a good efficiency at both low and high load.

Product status link
STPS20SM100S

Product summary			
I _{F(AV)}	20 A		
V _{RRM}	100 V		
T _j (max.)	150 °C		
V _F (typ.)	0.63 V		

1 Characteristics

Table 1. Absolute ratings (limiting values, with terminals 1 and 3 short circuited, at 25 °C, unless otherwise specified)

Symbol	Parameter		Value	Unit
V _{RRM}	Repetitive peak reverse voltage		100	V
I _{F(RMS)}	Forward rms current		30	Α
I _{F(AV)}	Average forward current δ = 0.5, square wave T_C = 125 °C		20	Α
I _{FSM}	Surge non repetitive forward current			Α
P _{ARM}	Repetitive peak avalanche power			W
T _{stg}	Storage temperature range		-65 to +150	°C
T _j	Maximum operating junction temperature (1)		150	°C

^{1.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameter

Symbol	Parameter	Max. value	Unit	
R _{th(j-c)}	Junction to case	1.3	°C/W	

For more information, please refer to the following application note:

• AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics (with terminals 1 and 3 short circuited)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
	Daviere leakers surrent	T _j = 25 °C	$V_R = V_{RRM}$	-	10	30	μA
I _R ⁽¹⁾		T _j = 125 °C		-	10	30	mA
IR (''	Reverse leakage current	everse leakage current $T_j = 25 ^{\circ}\text{C}$	-	5		μA	
		T _j = 125 °C	V _R = 70 V	-	5		mA
	Forward voltage drop	T _j = 25 °C	I _F = 5 A	-	565		mV
		T _j = 125 °C		-	480		
V _F ⁽²⁾		T _j = 25 °C	I _F = 10 A	-	685		
VF (2)		T _j = 125 °C		-	560	620	
		T _j = 25 °C	I _F = 20 A	-	800	900	
		T _j = 125 °C		-	630	700	

^{1.} Pulse test: t_p = 5 ms, δ < 2%

To evaluate the conduction losses, use the following equation:

$$P = 0.6 \times I_{F(AV)} + 0.005 \times I_{F}^{2} (RMS)$$

For more information, please refer to the following application notes related to the power losses:

AN604: Calculation of conduction losses in a power rectifier

^{2.} Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

AN4021: Calculation of reverse losses on a power diode

1.1 Characteristics (curves)

Figure 1. Average forward power dissipation versus average forward current (terminals 1 and 3 short circuited)

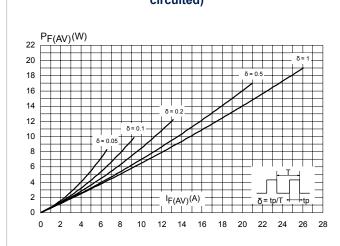


Figure 2. Average forward current versus ambient temperature (δ = 0.5, terminals 1 and 3 short circuited)

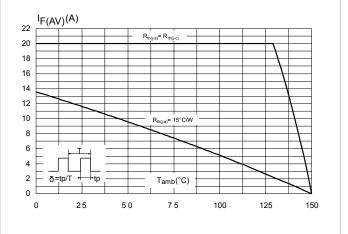


Figure 3. Normalized avalanche power derating versus pulse duration (T_j = 125 °C)

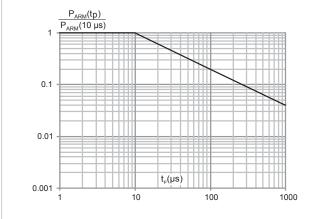
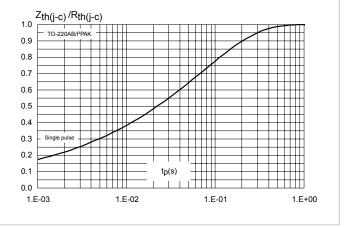



Figure 4. Relative variation of thermal impedance junction to case versus pulse duration

