
Yixin **CMOS Quad 3-State R/S Latches**

High-Voltage Types (20-Volt Rating) Quad NOR R/S Latch - CD4043B Quad NAND R/S Latch - CD4044B

CD4043B types are guad crosscoupled 3-state CMOS NOR latches and the CD4044B types are quad cross-coupled 3state CMOS NAND latches. Each latch has a separate Q output and individual SET and RESET inputs. The Q outputs are controlled by a common ENABLE input. A logic "1" or high on the ENABLE input connects the latch states to the Q outputs. A logic "0" or low on the ENABLE input disconnects the latch states from the Q outputs, resulting in an open circuit condition on the Q outputs. The open circuit feature allows common busing of the outputs.

The CD4043B and CD4044B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (D, DR, DT, DW, DWR, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V _{DD}) Voltages referenced to V _{SS} Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
For T _A = -55°C to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (T _A)
STORAGE TEMPERATURE RANGE (T _{stg})65°C to +150°C LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max

CD4043B, CD4044B Types

Features:

- 3-state outputs with common output ENABLE
- Separate SET and RESET inputs for each latch
- NOR and NAND configurations
- 5-V, 10-V, and 15-V parametric ratings
- Standardized symmetrical output characteristics
- 100% tested for guiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package temperature range): $1 V \text{ at } V_{DD} = 5 V$ 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices'

Applications:

- Holding register in multi-register system
- Four bits of independent storage with
- output ENABLE
- Strobed register
- General digital logic
- CD4043B for positive logic systems

04

Q1

R١

\$2

R2

Vss

NC=NO CONNECTION

OPEN CIRCUIT

+ NO CHANGE △ DOMINATED BY S=1 INPUT CD4043B

ENABLE

■ CD4044B for negative logic systems

V00

R4

R3

02

92CS-24476R1

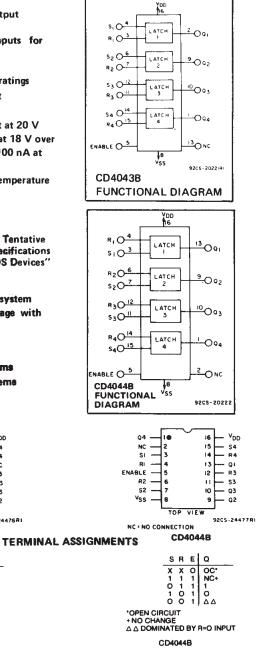
15

14 - S4 13 NC

12 - S3

10 - 03

OC*


1 0 4

TOP VIEW

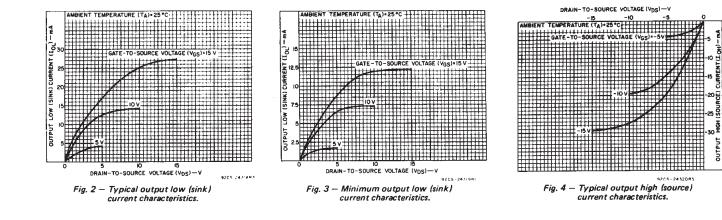
CD4043B

SREI Q

Ó 1

TRUTH TABLES

Recommended Operating Conditions TA=25°C For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.


Characteristic 🤲	V _{DD} (V)	Min.	Max.	Units
Supply-Voltage Range (T _A = Full Package Temperature Range)	1	3	18	v
SET or RESET Pulse Width, t _W	5 10 15	160 80 40	-	ns

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS			LIM	IITS AT	INDICAT	ED TEN	MPERATURES (°C)			UNITS			
	Vo	VIN	VDD					+25						
	(V)	(V)	(V)	55	-40	+85	+125	Min.	Тур.	Max.				
Quiescent Device Current, IDD Max.	-	0,5	5	1	1	30	30	-	0.02	1	μΑ			
	_	0,10	10	2	2	60	60	-	0.02	2				
	-	0,15	15	4	4	120	120	-	0.02	4				
	-	0,20	20	20	20	600	600	-	0.04	20				
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1					
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_				
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_				
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA			
(Source)	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	-				
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_				
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_				
Output Voltage:	-	0,5	5		0	.05		-	0	0.05				
Low-Level,		0,10	10	0.05				-	0	0.05	v			
VOL Max.		0,15	15	0.05				-	0	0.05				
Output Voltage:	_	0,5	5	4.95			4.95	5	-					
High-Level, VOH Min.	_	0,10	10	9.95				9.95	10	_				
	—	0,15	15	14.95				14.95	15	-				
Input Low Voltage, VIL Max.	0.5, 4.5	-	5	1.5				-	_	1.5				
	1, 9	-	10	3					—	3				
	1.5,13.5	-	15	4				_		4				
Input High Voltage, VIH Min.	0.5, 4.5	-	5	3.5				3.5	_	—	▼.			
	1, 9	-	10	7				7	-	_	-			
	1.5, 3.5	-	15	11				11		-				
Input Current IIN Max.	_	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁵	±0.1	μΑ			
3-State Output Leakage Current IOUT Max.	0,18	0,18	18	±0.4	±0.4	±12	±12	_	±10-4	±0.4	μΑ			

Ē

3

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}$ C; Input t_r , $t_f = 20$ ns, $C_L = 50 \, pF$, $R_L = 200 \, K\Omega$

CHARACTERISTIC		V _{DD} (V)	ALL	UNITS	
	а		TYP.	MAX.	1
Propagation Delay		5	150	300	
Time: tpHL, tpLH		- 10	70	140	ris
SET or RESET to Q		15	50	100	
3-State Propagation Delay		5	115	230	
Time: ENABLE to Q		10	55	110	ns
tPHZ, tPZH		15	40	80	
		5	90	180	
tPLZ, tPZL		10	50	100	ns
		15	35	70	
Transition Time:		5	100	200	
tTHL, tTLH		10	50	100	ns
	1	15	40	80	
Minimum		5	80	160	[
SET or RESET		10	40	80	ns
Pulse Width, t _W		15	20	40	
nput Capacitance, (Any Input) C _{IN}			5	7.5	pF

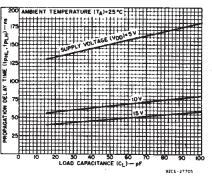
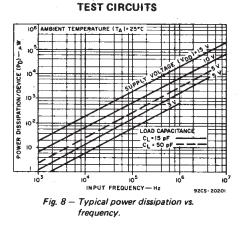



Fig. 7 — Typical propagation delay time vs. load capacitance—SET, RESET to Q, Q.

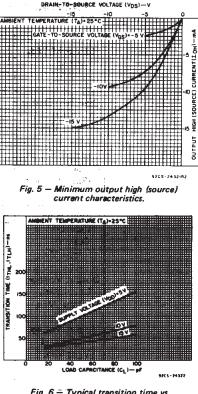


Fig. 6 — Typical transition time vs. load capacitance.

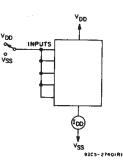


Fig. 9 - Quiescent device current.

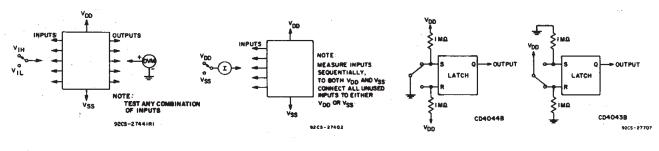


Fig. 10 — Input voltage.

Fig. 11 - Input current.

Fig. 12 - Switch bounce eliminator.