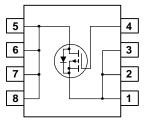
Si9435DY

P-Channel Logic Level PowerTrench[®] MOSFET

General Description

This P-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

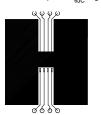
These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.


Applications

- DC/DC converter
- · Load switch
- Motor Drive

Features

- -5.3 A, -30 V. $R_{DS(ON)} = 50 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 80 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Low gate charge
- Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}
- High power and current handling capability

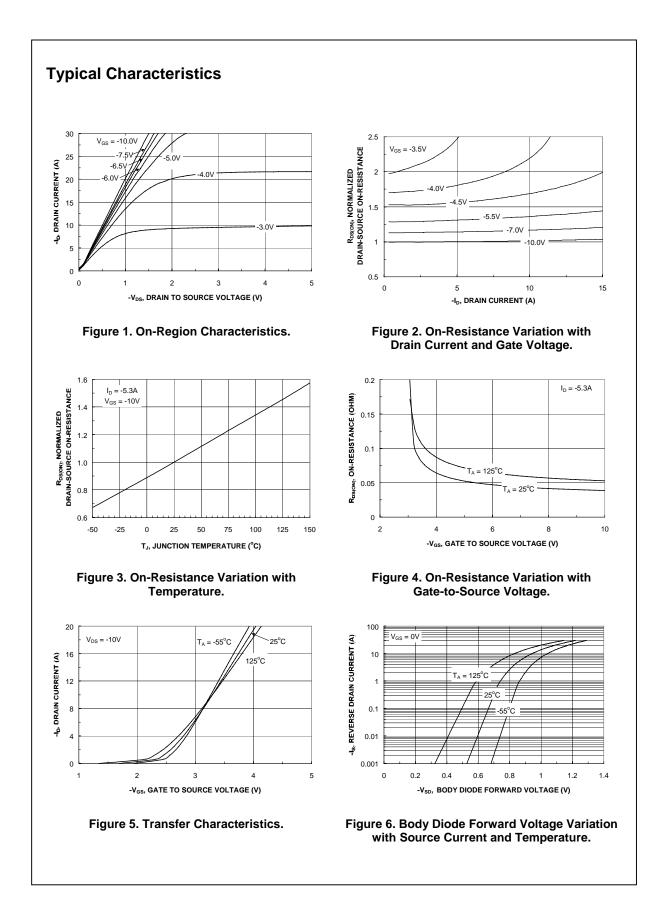

Absolute Maximum Ratings T_A=25°C unless otherwise noted

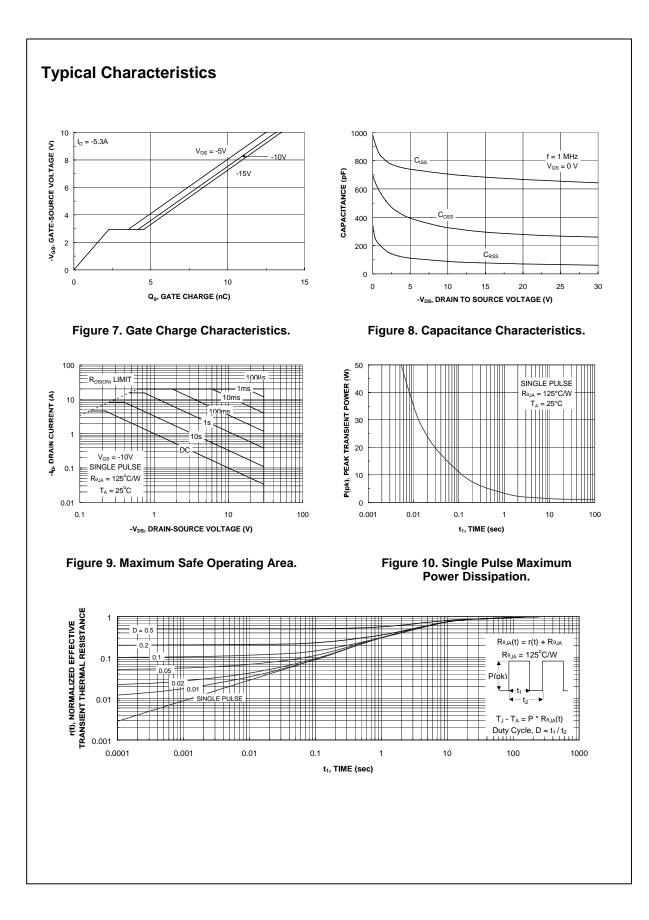
Symbol	Parameter		Ratings	Units		
V _{DSS}	Drain-Sourc	e Voltage		-30	V	
V _{GSS}	Gate-Source	e Voltage		±20	V	
I _D	Drain Current – Continuous		(Note 1a)	-5.3	A	
		– Pulsed		-20		
P _D	Power Dissi	pation for Single Operation	n (Note 1a)	2.5	W	
			(Note 1b)	1.2		
			(Note 1c)	1.0		
T _J , T _{STG}	Operating a	Operating and Storage Junction Temperature Range		-55 to +150	°C	
Therma	L Charact	eristics sistance, Junction-to-Ambi	ent (Note 1a)	50	°C/W	
R _{eJC}		sistance, Junction-to-Case	. ,			
Packag		g and Ordering I	()	Tape width	Quantity	
9435		Si9435DY	13"	12mm	2500 units	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics		1	1	l	I
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-22		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = -24 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			-1	μΑ
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-1	-1.7	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = -10 \ V, & I_D = -5.3 \ A \\ V_{GS} = -10 \ V, \ I_D = -5.3 \ A, \ T_J = 125^\circ C \\ V_{GS} = -4.5 \ V, \ I_D = -4.2 A, \end{array} $		38 54 55	50 79 80	mΩ
D(on)	On-State Drain Current	$V_{GS} = -10 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-20			Α
g fs	Forward Transconductance	$V_{DS} = -15 \text{ V}, \qquad I_D = -5.3 \text{ A}$		12		S
Dynamic	Characteristics	·				
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$		690		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		306		pF
C _{rss}	Reverse Transfer Capacitance			77		pF
Switchir	g Characteristics (Note 2)	·				
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -15 V$, $I_D = -1 A$,		7	14	ns
tr	Turn–On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		10	18	ns
t _{d(off)}	Turn–Off Delay Time			19	34	ns
t _f	Turn–Off Fall Time			11	20	ns
Qg	Total Gate Charge	$V_{DS} = -15 \text{ V}, \qquad I_D = -5.3 \text{ A},$		14	23	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -10 V$		2.4		nC
Q _{gd}	Gate-Drain Charge			4.8		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
l _s	Maximum Continuous Drain–Sourc			-5.3	Α	
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -5.3 A$ (Note 2)		-0.86	-1.2	V

the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

Q Q *Q D*


 a) 50°C/W when mounted on a 1in² pad of 2 oz copper b) 105°C/W when mounted on a .04 in² pad of 2 oz copper


 $\varphi \varphi \varphi \varphi$ 0000

c) 125°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

