MB05F THRU MB10F

MINIATURE GLASS PASSIVATED SINGLE-PHASE SURFACE MOUNT BRIDGE RECTIFIER

REVERSE VOLTAGE: 50 to 1000 VOLTS

FORWARD CURRENT: 0.5 AMPERE

FEATURES
- Surge overload rating: 30 amperes peak
- Ideal for printed circuit board
- Plastic material has Underwriters Laboratory Flammability Classification 94V-0
- Low leakage
- Reliable low cost construction utilizing molded

MECHANICAL DATA
Case: Molded plastic, MBF
Epoxy: UL 94V-0 rate flame retardant
Terminals: Leads solderable per MIL-STD-202, method 208 guaranteed
Mounting position: Any

Maximum Ratings and Electrical Characteristics

Ratings at 25°C ambient temperature unless otherwise specified.
Single phase, half wave, 60Hz, resistive or inductive load.

<table>
<thead>
<tr>
<th></th>
<th>(\text{MB05F})</th>
<th>(\text{MB1F})</th>
<th>(\text{MB2F})</th>
<th>(\text{MB4F})</th>
<th>(\text{MB6F})</th>
<th>(\text{MB8F})</th>
<th>(\text{MB10F})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Recurrent Peak Reverse Voltage (V_{\text{RRM}})</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
<td>Volts</td>
</tr>
<tr>
<td>Maximum RMS Voltage (V_{\text{RMS}})</td>
<td>35</td>
<td>70</td>
<td>140</td>
<td>280</td>
<td>420</td>
<td>560</td>
<td>700</td>
<td>Volts</td>
</tr>
<tr>
<td>Maximum DC Blocking Voltage (V_{\text{DC}})</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
<td>Volts</td>
</tr>
<tr>
<td>Maximum Average Forward Rectified Current (I_{\text{AV}})</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amp</td>
</tr>
<tr>
<td>on glass-epoxy P.C.B (Note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on aluminum substrate (Note 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method) (I_{\text{FSM}})</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amp</td>
</tr>
<tr>
<td>Maximum Forward Voltage at 0.4A DC and 25°C (V_F)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td>Maximum Reverse Current at (T_A=25^\circ \text{C}) (I_R)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uAmp</td>
</tr>
<tr>
<td>at Rated DC Blocking Voltage (T_A=125^\circ \text{C})</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Junction Capacitance (Note 1) (C_J)</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Typical Thermal Resistance (Note 3) (R_{\text{thJ}})</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>Typical Thermal Resistance (Note 2) (R_{\text{thL}})</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>Operating and Storage Temperature Range (T_J, \ T_{\text{stg}})</td>
<td>-55 to +150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
2- On glass epoxy P.C.B. mounted on 0.05 x 0.05” (1.3 x 1.3mm) pads
3- On aluminum substrate P.C.B. with an area of 0.8” x 0.8” (20 x 20mm) mounted on 0.05 x 0.05” (1.3 x 1.3mm) solder pad
Characteristics Curves ($T_A=25 \, ^\circ C$ unless otherwise noted)

Fig. 1 Derating Curve for Output Rectified Current

- **Average Forward Rectified Current (A)**
- **Voltage (V)**
- **Temperature ($^\circ C$)**
- **Resistance or Inductive Load**
- **Aluminum Substrate**
- **Glass**
- **Epoxy**
- **P.C.B.**

Fig. 2 Maximum Non-Repetitive Peak Forward Surge Current Per Leg

- **Peak Forward Surge Current (A)**
- **Number of Cycles**
- **Temperature ($^\circ C$)**
- **Single Half Sine-wave (JEDEC Method)**
- **f=60 Hz**
- **f=50 Hz**
- **10 cycle**
- **1 cycle**

Fig. 3 Typical Forward Voltage Characteristics Per Leg

- **Instantaneous Forward Current (A)**
- **Instantaneous Forward Voltage (V)**
- **Pulse Width=300us**
- **1% Duty Cycle**
- **$T_J=150 \, ^\circ C$**
- **$T_J=25 \, ^\circ C$**

Fig. 4 Typical Reverse Leakage Characteristics Per Leg

- **Instantaneous Reverse Leakage Current (µA)**
- **Percent or Rated Peak Reverse Voltage (%)**
- **$T_J=125 \, ^\circ C$**
- **$T_J=25 \, ^\circ C$**

Fig. 5 Typical Junction Capacitance Per Leg

- **Junction Capacitance (pF)**
- **Reverse Voltage (V)**
- **$T_J=25 \, ^\circ C$**
- **$t=1.0\, \mu s$**
- **Vsig=50mVp-p**